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Abstract—Tools for real-time emulation of mobile networks
are valuable for researchers due to the high amount of time
and resources it allows to save compared to carrying out
measurements in live networks. In this paper we present the
rationale, design and prototype implementation of a novel net
device in the ns-3 open source network simulator that allows
for end-to-end real-time emulation of LTE networks with real
endpoints. We then show the performance evaluation of a QUIC
proxy built on MASQUE using our emulated LTE setup. Our
results confirm the intended behavior of the implementation,
however, we also show the limitations of the real-time capabilities
of ns-3.

Index Terms—ns-3, QUIC, MASQUE, real-time emulation

I. INTRODUCTION

ns-3 is a discrete-time network simulator written in C++ [1].
It is widely used in networking for studies related to routing,
transport layer, testing prototypes, and a variety of other
scenarios. It is also capable of simulating mobile networks
including LTE and has an external mmWave module [2]. ns-3
has a real-time simulation mode, which can be used to work
with real servers when emulating mobile networks, however,
a real client is not supported (at the writing of this paper) and
this limits the possible measurement scenarios.

QUIC is a novel transport protocol created by Google and
under standardization by IETF [3]. In the design of QUIC
a core concept is encryption, which makes it impossible to
manage it from middleboxes. This feature increases privacy
and security at the cost of functionality (e.g., performance
enhancing proxies are hard to design and deploy). To over-
come this limitation, MASQUE was proposed in IETF, which
enables the creation of cooperative QUIC proxies, without
compromising the encryption [4].

The main motivation of our work is to extend the emu-
lation capabilities of the ns-3 simulator with real-time, end-
to-end LTE emulation. For this purpose we designed and
implemented a new net device module for the popular ns-
3 simulator (a net device represents a NIC in ns-3). This
enables a real client to communicate with a real server via
an emulated LTE network. Such an environment provides an
appropriate platform to easily perform performance evaluation
of new protocols, such as QUIC, where the protocol is
rapidly evolving and the continuous evaluation and testing is
especially important.

The contribution of this paper is twofold. First, we present
the design and implementation of our novel net device module,
which enables LTE UE emulation with a real client node. We
also show its working mechanism and how it can be integrated
in a ns-3 environment. Second, we demonstrate its use by an
important case study of a QUIC proxy built on MASQUE
protocol using our emulated LTE setup. We also show our
first performance evaluation results of this study focusing on
metrics like the completion time and the round-trip time. For
comparison purposes the study includes three cases, i.e., the
IP forwarding case and also two modes when the MASQUE
proxy is used (stream and data forwarding modes). For the
sake of the comparison we also consider both low throughput
and high throughput cases.

The paper is organized as follows. We discuss related works
regarding ns-3, proxying and QUIC in Section II. We present
the implementation highlights in Section III. Our net device
and the measurement environment are presented In Section IV.
The measurement results is demonstrated in Section V. Finally,
Section VI concludes our paper.



II. RELATED WORK

A. Evaluating the performance of QUIC in simulations

An implementation of the QUIC protocol in ns-3 has
been presented in [5]. The authors describe the design and
implementation in detail and validate the behavior of the
protocol with various congestion control algorithms. The code
has been made public, and has been used by the community in
further research projects such as [6], where the authors study
the performance of QUIC with interactive, low-latency traffic
such as cloud gaming, 4K streaming and online gaming. This
implementation has also been used in [7], which compares
TCP and QUIC performance in LTE networks. The module
since then has been extended in [8] where they added the
BBR (Bottleneck Bandwidth and RTT) congestion control
algorithm to the protocol and provided interfaces for further
extensions. While the proper behavior of QUIC is validated
and the module is immensely valuable for researchers, it takes
considerable effort to keep the implementation aligned with
the latest version of the protocol.

B. Extending the emulation capabilities of ns-3

The ns-3 simulator [1] and its models have proven to behave
realistically and are generally considered to be capable of
producing measurement results that accurately represent the
behavior of real networks. However, increasing the fidelity of
the simulations by using real implementations of protocols and
algorithms instead of the ns-3 models remains a crucial area
of research. Besides the increased accuracy of the findings,
another advantage of these approaches is that it can mitigate
the duplicate efforts of implementing both the real-world pro-
tocols and the simulation models. One important achievement
in this field is the Direct Code Execution cradle for the ns-
3 simulator [9], which enables the use of real Linux kernel
network stacks on the endpoints with simulated networks.
Another direction towards similar goals is the extension of the
emulation capabilities of the simulator, such as by the authors
of [10] and [11]. These works proposed enhancements to the
real-time emulation mode of ns-3, making it easier to use and
configure real network interfaces for the simulations.

The authors of [12] showed that it is possible to extend the
emulation support based on the EmuFdNetDevice class of the
simulator, by designing a novel, DPDK-based file descriptor
net device. The measurements presented in the paper showed
that DpdkNetDevice was capable of achieving much higher
data rates with significantly lower CPU load. Moreover, the
detailed description of the design and implementation of
the new net device class is also available in the paper. An
interesting use case of such an emulation-based testbed can
be seen in [13] where a framework is presented for QUIC
interoperability testing.

Real-time emulation of LTE networks with ns-3 has been
studied by [14] and [15]. Both are complex solutions, with
[14] using a modified LTE stack integrated with LabView and
[15] creating an integrated approach by combining ns-3 and
the CORE simulator in order to achieve the result.

C. MASQUE and Cooperative Proxying of QUIC Traffic

Multiplexed Application Substrate over QUIC Encryption
(MASQUE) [16] is a new protocol for using QUIC as tunnel
for IP and UDP traffic. It extends the HTTP CONNECT
method, thus it requires explicit user request in order to work.
The use case for such a protocol is similar to VPNs (Virtual
Private Networks), a proxy is requesting objects from servers
on behalf of the user, which can improve privacy depending
on threat level (shifts the trust to the proxy provider from the
web service provider in the context of the Internet). MASQUE
can be used to tunnel a QUIC connection if the client
supports it as well. The two different modes of MASQUE
are datagram mode and stream mode. In datagram mode, the
tunneling connection (also referred to as outer connection)
does not acknowledge, and in stream mode, it does. Building
on MASQUE makes it possible to implement and deploy
middlebox functionalities with explicit consent and without
compromising the integrity of the privacy or security context
of the connection [4].

Fig. 1. Proxy functionality with QUIC tunnelling

The authors of [17] studied the performance implication of
using MASQUE with different protocols (including QUIC).
The throughput is a few percent less compared to traffic
without tunneling, and in some cases MASQUE has better
performance, e.g. when the client-proxy link is noisy but has
low delay.

III. IMPLEMENTATION

In this section we describe our additions and modification
to ns-3, focusing on the novel net device that enables LTE UE
emulation with a real client node.

A. LteUeFdNetDevice

We aimed for a setup where we have a real client and a
real server with a real proxy in front of it, with the proxy and
the client being connected through ns-3 with LTE emulation,
however this is not supported by ns-3. The main reason is
that NAT is not implemented in the UE of LTE network
and the LteUeNetDevice (C++ class of the net device that
a host uses to connect to the LTE network in ns-3) does
not support using file descriptors to communicate with the
outside environment. The latter limitation could be potentially
overcome by using two NetDevices (the C++ class of ns-3 net
device), but we opted for creating a new NetDevice that is a
mix of LteUeNetDevice and FdNetDevice (C++ class of the
net device in ns-3 that supports file descriptors) to have finer



control over it, called LteUeFdNetDevice. We use this new
net device to mitigate the first limitation by implementing a
simplified, limited NAT (with the help of another new net
device on the other end of the LTE network).

This net device uses file descriptors in downlink and LTE
in uplink directions, which enables the use of a real client to
connect to it and then use the simulated LTE to connect to the
proxy. LteUeFdNetDevice inherits from LteUeNetDevice, thus
ns-3 can use it as the net device of the UE. The file descriptor
capability was implemented based on FdNetDevice, however
we do not inherit from it to reduce complications originating
from the fact that both of these classes have the same base
class (NetDevice) and implement (some of) its methods as
shown in Figure 2. The classes with green background are
added by us, they are based on existing implementations.

Fig. 2. Inheritance diagram of net devices. Our additions are shown with
green background.

B. Packet journey

When a packet coming from the client arrives at the
LteUeFdNetDevice, it will be handled by the ForwardUp
C++ function at some point, where we call the LTE send
function. This behavior basically routes the packet from the
file descriptor to the LTE network. In the LTE network the
eNodeB gets the packet via radio link, and sends it to the
SGW node, which sends it to the PGW node, and then finally
it is sent to the RightNode. This node is in ns-3 with a modified
FdNetDevice (we call FdNetDeviceIpChange), and its task is
to implement the communication between ns-3 and the proxy.
It sends the packet to the proxy unmodified, the proxy handles
it and replies. The packets coming back are handled by the
ForwardUp C++ function, which implements the IP changing
in FdNetDeviceIpChange, to change the destination address
to that of the UEs and also adds a GTPU (GPRS Tunnelling
Protocol, [18]) header with source address of the PGW node.
This ensures that the LTE network will handle the packets
correctly and the UE will receive them (to the SGW these

packets appear as if the PGW sent them). On the side of
the UE, in LteUeFdNetDevice when the packet is received,
the destination address is changed back to the address of the
client. Since the UDP checksum in the GTPU header is set to
0, UdpL4Protocol (the C++ class in ns-3 that represents the
UDP layer) needed a modification to not drop packets with 0
checksums (this behavior is allowed by the standard, see [19]).

IV. MEASUREMENT ENVIRONMENT

The setup is realized in Docker containers as shown in
Figure 3. We are using a modified version of the setup from
[17], which was created based on [13]. The client container
contains the QUIC client, the sim container contains the
simulated LTE environment implemented in ns-3 [1], the
proxy and server containers contain the MASQUE proxy and
QUIC server, respectively. The sim container has a pair of
virtual network devices since the EmuEpc (the module in ns-
3 that implements the LTE EPC network) requires them for
the SGW-eNodeB communication. The direct communication
between the two interfaces of the sim container is blocked
via iptables firewall, thus the packets are forced to go through
ns-3.

A. ns-3 scenario

We have implemented a scenario in ns-3 that creates the
above setup. It is required to create routes between the
RightNode and the PGW and the RightNode and the SGW
since the RightNode will send packets to the SGW, pretending
to be coming from the PGW. The RightNode also needs routes
to the proxy, since it acts as a router between ns-3 and the
proxy.

The eNodeB, the UE and the RightNode have mobility mod-
els (ConstantPositionMobilityModel class in ns-3). Neither of
them are moving and they constitute a rectangular triangle.
The distance between the eNodeB and UE is 99 meters, which
is a typical distance in LTE networks (the position of the
RightNode is actually irrelevant).

The scenario configures the LTE and the simulation param-
eters as shown in Table I. The modules are the following:
Global: sets the simulation type to real time and the checksum

calculation to be off.
RealtimeSimulatorImpl: sets the hard limit parameter of

the simulator. This is the maximum seconds that the
simulator can lag behind the wallclock.

LteUePhy: sets the transmit power and noise level of all UEs.
LteEnbPhy: sets the transmit power and noise level of all

eNodeBs.
LteSpectrumPhy: turns off error models of the LTE spectrum

layer.
LteHelper: controls parameters of the LTE helper, which is

used to set up the different parts of the LTE network.
LteEnbRrc: sets the default transmission mode of eNodeBs

to SISO.
DropTailQueue<Packet>: default values for the drop tail

queues. The max queue size is set to a low value to induce
packet loss.



Fig. 3. Setup topology

LteAttribute: configures the scheduler type, the loss- and
fading modes used in the simulations.

FadingModelAttribute: sets the file name to use and the
number of RBs (the default is 100 also).

EnbDevice: configures the parameters of the net devices of
the eNodeBs. The first 2 are the number of resource
blocks allocated in downlink and uplink, respectively. The
last 2 are the EARFC of the channel in downlink and
uplink, respectively. The number of resource blocks are
changed depending the measurement.

V. MEASUREMENTS

The measurements were done using the setup described
above. We differentiate between lower and higher LTE
throughput measurements, which we can control by setting the
number of resource blocks (DlBandwidth and UlBandwidth)
to either lower or higher values. The process consists of
downloading a 10MB sized file. The RTT between the client
and proxy containers is around 38ms as reported by the ping
program (when no file download is happening). The one way
delay between the RightNode and PGW is configured to be
10ms.

A. Lower performance

We set the LTE parameters to values that causes low
throughput. To achieve this, the uplink and downlink resource
blocks are each given the value 25.

Figure 4 shows the results of measurements with 3 different
set of parameters where each of them ran 10 times. The first
uses basic IP forwarding and the last two uses the MASQUE
proxy. IP forwarding is accomplished via setting up DNAT in
the proxy container and turning off proxy mode in the client
and server (and not starting the MASQUE proxy in the proxy
container). In proxy datagram mode, the outer QUIC layer
does not acknowledge the packets, instead this is done in the
tunneled connection (which also uses the QUIC protocol). In
stream mode, the acknowledgement is done in the proxy (outer
connection), and as can be seen in the figure, it increases
the completion time significantly more (30.9% on average),
than datagram mode (4.5% on average). This is the expected
behaviour that results from the implemented infinite buffer size

TABLE I
THE TABLE SHOWS THE PARAMETERS AND THEIR VALUES FOR THE

DIFFERENT MODULES IN NS-3.

Global
Simulator ImplementationType RealtimeSimulatorImpl

ChecksumEnabled False
RealtimeSimulatorImpl

SynchronizationMode HardLimit
HardLimit 0.2s

LteUePhy
TxPower 10.0

NoiseFigure 7.0
LteEnbPhy

TxPower 30.0
NoiseFigure 5.0

LteSpectrumPhy
DataErrorModelEnabled true
CtrlErrorModelEnabled true

LteHelper
UsePdschForCqiGeneration false

UseIdealRrc true
LteEnbRrc

EpsBearerToRlcMapping RLC UM ALWAYS
DefaultTransmissionMode 0

DropTailQueue<Packet>
MaxSize 16

LteAttribute
SchedulerType PfFfMacScheduler
PathlossModel FriisPropagation LossModel
FadingModel TraceFadingLossModel

FadingModelAttribute
TraceFilename fading trace EPA 3kmph.fad

RbNum 100
EnbDevice

DlBandwidth {25,100}
UlBandwidth {25,100}

DlEarfcn 9895
UlEarfcn 27785

of the stream mode. Comparing this result to the prior work
of [17] one can see the same effect.

Figure 5 shows the RTT for the different set of measure-
ments. As can be seen, the delay between the client and the
proxy (in proxy mode) in either datagram mode or stream
mode is the same. The RTT is higher in IP forward mode and
in proxy (datagram) mode (between the client and server),
because of the 25ms one way delay between the proxy and
the server, and the difference between them is small, the latter



Fig. 4. Completion time shown for IP forward (left), proxy with datagram
mode (middle) and proxy with stream mode (right) setups with lower
bandwidth limit

Fig. 5. From the perspective of the client, the RTT shown for (from left to
right): 1. IP forward between the client and server, 2. Proxy (datagram mode)
between the client and the proxy, 3. Proxy (stream mode) between the client
and proxy, 4. Proxy (datagram mode) between the client and server.

being slightly higher. In these configurations the simulator’s
lag behind real time adds to the overall RTT, which causes
the delay to be higher than expected (10ms one way delay
between the RightNode and PGW, and the LTE networks delay
should be less than 35ms). The proxy stream mode client to
server RTT is not shown in this figure because the results were
erroneous.

B. Higher performance

We set the LTE parameters to values that causes higher
throughput to simulate adequate reception conditions. To
achieve this, the uplink and downlink resource blocks are each
given the value 100.

Fig. 6. Completion time shown for IP forward (left), proxy with datagram
mode (middle) and proxy with stream mode (right) setups with higher
bandwidth limit

Figure 6 shows the results of measurements with the same
setup as above, with the only difference of higher resource
block resulting in higher bandwidth limit. In this case, the
stability of the IP forward and datagram proxy mode is
degraded (as indicated by the outlier higher completion time).
The average completion time in datagram proxy mode is
19.3% higher compared to IP forward mode. The completion
time in stream proxy mode is 5.8% less than in IP forward
mode on average, which is caused by the individual high value
in the latter, as the median is actually 5.4% higher.

Figure 7 shows the RTT for the different set of measure-
ments. Comparing with the previous results (Figure 5) the
RTT increased overall, which can be explain by the higher
throughput, thus higher computation requirements by the sim-
ulator, even though the completion times are much lower. The
delay, however, not increased equally. In case of IP forwarding,
where previously it was slightly lower than proxy in datagram
mode (client-server delay), now it is slightly higher. We can
also see in this figure that the proxy in stream mode has the



Fig. 7. From the perspective of the client, the RTT shown for (from left to
right): 1. IP forward between the client and server, 2. Proxy (datagram mode)
between the client and the proxy, 3. Proxy (stream mode) between the client
and proxy, 4. Proxy (datagram mode) between the client and server, 5. Proxy
(stream mode) between the client and the server.

highest RTT. The increase is 57ms for IP forward mode, and
15ms for proxy datagram mode (client-proxy delay), which
hints that the added delay by ns-3 increased, but it is not
the sole cause of this, and the RTT between the proxy and
server is higher as well. A possible cause for the latter is
higher processing requirement in the server, necessitated by
the higher throughput.

VI. CONCLUSIONS

Adding a new net device to ns-3 that enables a real client to
communicate with a real server via an emulated LTE network
has two main benefits. It makes it easier to test new protocols
in a simulated network environment, since there is no need to
implement it in the simulator and a real LTE environment is
not needed.

The implementation is a proof of concept, there are multiple
ways to enhance it. Future works could expand on it to enable
full NAT support, which in turn would enable multiple real
clients to connect through one LTE UE node. A study could
assess the feasibility of a similar modification to the mmWave
module. This would further increase the testing capabilities on
ns-3.

It is clear that simulating an LTE network have limitations
caused by the resource (memory, CPU speed) hungry nature
of the process. In case of ns-3 it manifests as additional delay.
For our low throughput setups this is not pronounced, however,
in high throughput scenarios this can be significant. It is for
further study to understand the achievable cellular throughput
in real time using more powerful computing resources. If real-
time ns-3 emulation is not strictly required, our implementa-

tion provides a valuable tool since it does not require any radio
specific equipment.
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