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1.7.1. Introduction

Teletraffic theory [1.7.1], [1.7.7] is the basis for performance evolution and
dimensioning of telecommunication networks. It was founded by Agner Krarup Erlang
(1878-1929) [1.7.6], a Danish mathematician, at the beginning of the 20" century.
The theory has been developed along with the developments of telephone networks
[1.7.7] and it is an essential component in the design of traditional telecommunication

networks.

Teletraffic theory has been developed together with the enormous
developments of switching and networking technology in the last decades. It has
been incorporating the recent advances of operation research and queueing theory.
Integrating the results of different fields a continuous evolution of teletraffic theory

can be observed.

Teletraffic theory deals with the application of mathematical modeling of the
traffic demand, network capacity and realized performance relationships. The traffic
demand is statistical in nature resulting in appropriate models derived from the theory

of stochastic processes.

In this chapter first we present an introduction about the characteristics of
network traffic. The nature of traffic had a strong impact on the developed teletraffic
theory we have today. After we overview the basics of teletraffic theory including the
notations, classification of systems and the fundamental teletraffic equations. The
applications of basic teletraffic results outlined in this chapter can be found in Chapter

3.3 where teletraffic models and the teletraffic dimensioning methods are described.
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1.7.2. The characteristics of network traffic

The nature of traffic in today’s data networks (e.g. Internet) is completely
different from classical telephone traffic and the characterization is not as simple as it
was in the case of conventional POTS traffic [1.7.8], [1.7.9]. The main difference can
be explained by the fact that in traditional telephony the traffic is highly static in
nature. It was possible to find a typical user and behavior where averages simply
describe the system performance adequately due to the limited variability of traffic

characteristics.

The static nature of telephone traffic resulted in “universal laws” governing
telephone networks like the Poisson nature of call arrivals [1.7.8], [1.7.9]. This law
states that call arrivals are mutually independent and exponentially distributed with
the same parameter. The Poisson call arrival model had a general popularity in the
last fifty years. The great success of the Poissonian model is due to the parsimonious

modeling, which is a highly desirable property in practice.

A similar “universal law” of the POTS traffic is that the call holding times follow
more or less an exponential distribution. This model was also preferred due to its
simplicity and analytical tractability in spite of the fact that the actual telephone call
duration distribution sometimes deviates significantly from the exponential
distribution. However, these deviations did not yield to major errors in network design
thanks to the nice nature of Poisson arrival process. This is because several
performance measures do not depend on the distribution but only of the average of

holding time.

A dramatic change happened concerning the validity of these laws when
telephone networks were used not only for voice conversations but also for FAX
transmissions and Internet access. The statistical characteristics of these services
are significantly different from voice calls. Especially, the call durations become much
longer and more variable compared to classical voice calls. As the popularity of the
Internet increased due to the success of Web, more and more people started to use
the classical telephone networks for Internet access. These changes call for

reviewing the old laws and present a challenge for today’s teletraffic researchers.

The picture is completely different in case of data networks. All the

expectations by finding similar universal laws for data traffic failed [1.7.8]. It is
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because data traffic is much more variable than voice traffic. Roughly speaking, it is
impossible to find a general model because the individual connections of data
communication can change from extremely short to extremely long and the data rate
can also be in a huge range. There is no static and homogenous nature of data traffic
as it was found in case of the voice traffic. This extremely bursty nature of data traffic
is mainly caused by the fact that this traffic is generated by machine-to-machine

communication in contrast to the human-to-human communication.

This high variability of data traffic in both time (traffic dependencies do not
decay exponentially fast as it was the case in voice traffic but long-term
dependencies are present, e.g. in the autocorrelation of the traffic) and in space
(distributions of traffic related quantities do not have exponential tails as it was the
case in the case of voice traffic but heavy tails are very common, e.g. in distributions
of web item sizes) call for new models and techniques to be developed. Statistically,
the long-term dependencies can be captured by long-range dependence (LRD), i.e.,
autocorrelations that exhibit power-law decay. The extreme spatial variability can be
described by heavy-tailed distributions with infinite variance, which is typically
expressed by the Pareto distributions. The power-law behavior in both time and
space of some statistical descriptors often cause the corresponding traffic process to

exhibit fractal characteristics [1.7.8].

The fractal properties often manifest themselves in self-similarity. It means that
several statistical characteristics of the traffic are the same over a range of time
scales. Self-similar traffic models seem to be successful parsimonious models to
capture this complex fractal nature of network traffic in the previous decade.
However, recent research indicates that the actual data traffic has a more refined
burstiness structure, which is better captured by multifractality rather than only self-
similarity, which is a special case of monofractality. Multifractal traffic models have

also been developed [1.7.8].

Besides the very variable characteristics of data traffic there are other factors
that make predictions about data traffic characteristics more unreliable. The Internet
traffic is doubling each year. This extreme traffic increase with the possible so-called
“killer applications” could disrupt any predictions. However, from the history of the
Internet we can identify only three “killer applications” that dramatically changed the

traffic mix of the Internet (the e-mail, the web and the recently emerging Napster-like
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applications) but nobody knows when we can face a popular application which will
take the major role of the Internet traffic characteristics. The picture is even more
complicated if we think of Quality of Service (QoS) requirements of data services
which can be very different from one application to the other. Different QoS

requirents generate different traffic characteristics.

To describe these different traffic characteristics in case of both stream and
elastic traffic flows a number of traffic models and traffic characterization techniques
have been developed. Based on a successful traffic modeling one can also hope to
find successful traffic dimensioning methods for resource allocation. The most

important traffic models and dimensioning methods are described in Chapter 3.3.

1.7.3. Basic concepts of teletraffic theory

In this subsection the most important teletraffic concepts are overviewed
[1.7.1].

1.7.3.1. Basic notions

A demand for a connection in a network is defined as a call, which is activated
by a customer. The call duration is defined as holding time or service time. The traffic
load is the total holding time per unit time. The unit of traffic load is called erlang (erl)

after the father of teletraffic theory.
The traffic load has the following important properties:
1. The traffic load (offered traffic) a is given by a=ch (erl) where c is the

number of calls originating per unit time and h is the mean holding time.

2. The traffic load (offered traffic) is equal to the number of calls originating in
the mean holding time.

3. The traffic load (carried traffic) carried by a single trunk is equivalent to the
probability (fraction of time) that the trunk is used (busy).

4. The traffic load (carried traffic) carried by a group of trunks is equivalent to
the mean (expected) number of busy trunks in the group.

1.7.3.2. Classification of teletraffic systems

The switching system is defined as a system connecting between inlets and

outlets. A system is called a full availability system if any inlet can be connected to
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any idle outlet. Congestion is a state of the system when a connection cannot be
made because of busy outlets or internal paths. The system is called a waiting or
delay system if an incoming call can wait for a connection in case of congestion. If no
waiting is possible in congestion state the call is blocked and the system is called as

loss system or non-delay system.
A full availability system can be described by the following [1.7.1]:

1. Input process: This describes the way of call arrival process.

2. Service mechanism: This describes the number of outlets, service time
distributions, etc.

3. Queue discipline: This specifies ways of call handling during congestion. In
delay systems the most typical queueing disciplines are the first-in first-out
(FIFO), last-in first-out (LIFO), priority systems, processor sharing, etc.

The Kendall notation is used [1.7.1], [1.7.3], [1.7.4] for classification of full

availability systems named after David A. Kendall, a British statistician:
A/B/C/D/E-F

where A represents the interarrival time distribution, B service time distribution, C
number of parallel servers, D system capacity, E finite customer population, and F is

the queueing discipline. The following notations are used:

M: Exponential (Markov)

Ex: Phase k Erlangian

Hy,: Order n hyper-exponential

D: Deterministic

G: General

Gl: General independent

MMPP: Markov modulated Poisson process

MAP: Markov arrival process

As an example M/M/1/x//«-FCFS represents a queueing system with
Poisson arrivals and exponentially distributed service times. The system has only one
server, an infinite waiting queue. The customer population is infinite and the

customers are served on a first come first served basis.
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1.7.3.3. Fundamental relations

PASTA

For a Poisson arrival process (exponential interarrival times) in steady state
the distribution of existing calls at an arbitrary instant is equal to the distribution of
calls just prior to call arrival epochs. This relationship is called PASTA (Poisson
arrivals see time averages) [1.7.1] because this probability is equal to the average

time fraction of calls existing when observed over a sufficiently long period.

Markov property

If the interarrival time is exponentially distributed, the residual time seen at an
arbitrary time instant is also exponential with the same parameter. A model with
interarrival time and service time both exponentially distributed is called Markovian

model [1.7.1], otherwise it is called non-Markovian model.

Little Formula

The formula N=AW is called the Little formula [1.7.1], [1.7.3], [1.7.4] where N is
the mean number of customers in the system, 1 is the mean arrival rate and W is the
mean waiting time in the system. Note that the Little formula applies to any stationary

system where customers are not created or lost in the system.

Loss Formula

The probability of an arbitrary customer being lost [1.7.5] is

Ploss = 1_ﬂ
0

where p is the offered load and ¢ is the probability that the server is idle. The formula
is called the loss formula and is also valid for multiserver systems with p being
interpreted to be the mean load per server and ¢ is the probability that arbitrarily

chosen server is idle.
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Unfinished work vs. number in the system

In a constant service time single server system we have the following

relationship between the unfinished work V, in the system and the number of
costumers X, in the system: X, =[V, ]. Based on this we have the following identity

for the complementary distributions [1.7.5]:

P(X, >n)=P(, >n), for n an integer.

Packet loss probability vs. queue length tail probability

Consider a discrete time G/D/1 system with fixed length packet arrivals (cells).

An upper bound for the cell loss probability can be given [1.7.5] by
PR < P(X{" >K),

where pis the load, X;”is the queue length in a hypothetical infinite capacity queue.

The generalized Benes$ formula

Consider a service system with unlimited buffer. Assume that the system is
stationary so that O represents an arbitrary time instant. The server capacity is 1 unit
work per unit of time. The complementary distribution of the amount of work in the
system at time 0 can be computed [1.7.5] by

P(Vo>x):J'P(§(u)2x>§(u+du) and V., =0),

u>0

where £(t) is defined by &£(t) = A(t)-t, t>0, and A(?) is the amount of work arriving

to the system in the interval [-£,0). The result covers all realizable queueing systems

and found to be very useful in teletraffic theory.

1.7.4. The M/G/1 queue

The queueing system with Poisson arrivals, general service time distributions
and a single server (M/G/1) is a very important category in teletraffic theory. In this
subsection we overview the major results related to this queueing system [1.7.1],
[1.7.2], [1.7.3], [1.7 4].

The following notations are used:
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W: waiting time in the queue

T: response time in the system

Ny: number of customers in the queue

N: number of customers in the system

S: service time

The average waiting time and the number of customers in the queue for the

M/G/1 queueing system are given by the following equations [1.7.2]:

o)< PEOW D) oy PP
W) 2(1- p) (Na) 2(1- p)

where p is the load of the queue and c is the squared coefficient of variation of the
service time, i.e. Var(S)/E*2(S).
The distribution of the number of customers in the system can be computed

from the Pollaczek-Khinchin transform equation [1.7.2]:

OO G2

where G, (z)=E[z"] the probability generating function for N, L, (s)=E[e ¥]the

Laplace transform for X and A is the Poisson arrival rate. Based on this key equation
the obtained queue length distributions for the most frequently used M/G/1 systems

are summarized below.

Queue Queue length distribution P(N=n)
MM/1 1-p)p"
ko1 al-a)e" +(1-g)L-a,)a;
M/D/1 n . +n—k k n-k-1
a- p)zkzoekp &) « (ko (n_)k()|p)
M/E/1 N i kj Kj
1- (=™ :
- PIX D Kn— jja+(n_ | _J

Here H> means the hyperexponential distribution given by parameters ay, a2
and q. Ei refers to the k-Erlangian distribution given by parameters « and k. These
two distributions are important because using them we can approximate M/G/1
systems where the squared coefficient of variation of the service time less than or

equal to 1 (M/E,/1 queues) and greater than or equal to 1 (M/H2/1 queues).
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1.7.5. General queueing systems

General queueing systems (G/G/n queues) are usually difficult to solve but
there are subclasses that can be handled more easily than others. For example, the
G/M/1 queueing system is less useful than the M/G/7 in data networks but the
analysis is simpler than its dual pair. A remarkable result of the G/G/1 systems is the
Lindley’s integral equation [1.7.1], [1.7.3] which gives the stationary waiting time

distribution:
t
Fu(®) = [Fy (t-v)dF, (v),

where the random variable U =S-A with A denoting the time between the arrivals of

two consecutive customers.

1.7.6. Teletraffic techniques

Beyond the classical queueing methods there are humerous approximations,
bounds, techniques to handle teletraffic systems. In this subsection we overview the

most significant methods.

The fluid flow approximation [1.7.3] is a useful technique when in the time
scale under investigation we have lots of traffic units (packets). In this case we can
treat it as a continuous flow like fluid entering a piping system. We can define A(t)
and D(t) to be the random variables describing the number of arrivals and departures
respectively in (0,f). The number of customers in the system at time t is N(t)=A(t)-D(t),
assuming that initially the system is empty. By the weak law of large numbers, when
A(t) gets large it gets close to its mean and this is the same for D(t). The fluid flow
approximation simply replaces A(t) and D(t) by the their means, which are continuous
deterministic processes. Fluid flow models are frequently used in teletraffic systems

modeling.

The fluid flow approximation uses mean values and the variability in the arrival
and departure processes is not taken into account. The diffusion approximation
[1.7.3] extends this model by modeling this variability (motivated by the central limit

theorem) by normal distribution around the mean. Diffusion approximations are also
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applied to solve difficult queueing systems. For example, the in the complex G/G/1

system the queue length distribution can be obtained by diffusion methods.

An approach based on the information theory called the maximum entropy
method [1.7.3] is often useful in solving teletraffic systems. The basis is Bernoulli’s
principle of insufficient reasons which states that all events over a sample space
should have the same probability unless there is evidence to the contrary. The
entropy of a random variable is minimum (zero) when its value is certain. The entropy
is maximum when its value is uniformly distributed because the outcome of an event
has maximum uncertainty. The idea is that the entropy be maximized subject to any
additional evidence. The method is successfully used for example in queueing

theory.

A number of other methods have also been developed like queueing networks
with several solving techniques, fixed point methods, decomposition techniques, etc.

Interested readers should refer to the reference list of this chapter.
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