
Agile Network Service Development

ASN.1

Gusztáv Adamis

BME TMIT

Data Specification

 High level data structure definition

◼ Only structure

◼ Can be complicated

 Abstract Data Types (~classes)

◼ Data structure + operations

◼ Axiomatic

 ACT ONE in SDL

◼ Pragmatic, constructive

 C++, JAVA, …

2

ASN.1

 Abstract Syntax Notation One

◼ High level structures

◼ Originally for Application layer protocols

◼ Now mainly for mobile protocols

 Two parts

◼ Data Specification

◼ Encoding Rules

 Binary encoding

 BER – Basic Encoding Rules

▪ CER – Canonical Encoding Rules

▪ DER – Distinguished Encodig Rules

▪ variations of BER

 PER – Packed Encoding Rules

▪ compact encoding

▪ for radio interface protocols 3

ASN.1 Syntax

 UPPERCASE and lowercase characters

different

 Keywords – all capital

 Identifiers – start with letter, contains letters,

numbers, and -;

◼ two consequitive - not allowed

 Types – first letter: capital

 Other identifiers (e.g. record fields, enumerated

literals) – first letter: lowercase

 -- comment till the end of line

4

ASN.1 Data Type Specification

 Universal Types

◼ INTEGER

◼ BOOLEAN

◼ REAL

◼ NULL

◼ BIT STRING – ‘1010’B (length=4)

◼ OCTET STRING – ‘AB12’O (length=2)

◼ IA5String – ”Hello”

 other string types: GraphicalString, NumericalString,

PrintableString, etc.

5

Construction Rules

 SEQUENCE ~structure, record

 SET – similar, but fields can be transmitted in

any order

 OPTIONAL – field may be omitted

 DEFAULT

 CHOICE – union (only one of the fields)

PersonalData ::= SEQUENCE {

age INTEGER DEFAULT 10,

married BOOLEAN OPTIONAL }

6

Definition symbol

Construction Rules ctd.

 SEQUENCE OF / SET OF

◼ arrays

◼ SEQUENCE OF INTEGER

◼ SET OF PersonalData

 ENUMERATED

Colors ::= ENUMERATED {blue, green, red}

7

Sub-Types
 Small-Integer ::= INTEGER(0..9)

 SmallPrimes ::= INTEGER(2|3|5|7)

 Array64 ::= SEQUENCE SIZE (64..64) OF

INTEGER

◼ or

 Array64 ::= SEQUENCE SIZE (64) OF INTEGER

 ArrayMax64::= SEQUENCE SIZE (1..64) OF

INTEGER

 Bit8 ::= BIT STRING SIZE(8)

 Telephone-Number ::=

IA5String(FROM('1'|'2'|'3'|'4'|'5'|'6'|'7'

|'8'|'9'|'0'|'*'|'#'))

8

BER – Basic Encoding Rules

 Each data is sent as a triplet:

 TAG + Length + Value (TLV)

◼ TAG ~ Type Code

◼ Simple Types

 ‘Value’ is really the value

◼ Structured Types

 At ‘Value’: new TAG+Length+Value triplet(s) stand

recoursively

 E.g.: Value of a SEQUENCE is the list of its fields

9

Encoding of a TAG

10

7 6 5 4 3 2 1 0

Cl. F. TAG value

TAG
7 6 5 4 3 2 1 0

TAG values for Universal Types:

• 1 = BOOLEAN
• 2 = INTEGER
• 3 = BIT STRING
• 4 = OCTET STRING
• 5 = NULL
• 10 = ENUMERATED
• 16 = SEQUENCE / SEQUENCE OF
• 17 = SET / SET OF
• 22 = IA5String

Class:

• 00 = Universal
• 01 = Application wide

(Standardised type)

• 10 = Context-specific
(SEQUENCE/SET/CHOICE field)

• 11 = Private
(Non standardised type)

Format:

• 0 = Primitive
• 1 = Structured

Encoding of a TAG

11

7 6 5 4 3 2 1 0

Cl. F. TAG value

7 6 5 4 3 2 1 0

Cl. F. 1 1 1 1 1

7 6 5 4 3 2 1 0

1 TAG value first ...

7 6 5 4 3 2 1 0

0 TAG valuelast

TAG

TAG long form:

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

1 TAG ...

7 6 5 4 3 2 1 0

0 TAG0 TAG

TAG short form:

TAG

TAG values for Universal Types:

• 1 = BOOLEAN
• 2 = INTEGER
• 3 = BIT STRING
• 4 = OCTET STRING
• 5 = NULL
• 10 = ENUMERATED
• 16 = SEQUENCE / SEQUENCE OF
• 17 = SET / SET OF
• 22 = IA5String

Class:

• 00 = Universal
• 01 = Application wide

(Standardised type)

• 10 = Context-specific
(SEQUENCE/SET/CHOICE field)

• 11 = Private
(Non standardised type)

Format:

• 0 = Primitive
• 1 = Structured

Max short value = 30 (11110)

Encoding of a TAG

12

7 6 5 4 3 2 1 0

Cl. F. TAG value

7 6 5 4 3 2 1 0

Cl. F. 1 1 1 1 1

7 6 5 4 3 2 1 0

1 TAG value first ...

7 6 5 4 3 2 1 0

0 TAG valuelast

TAG

TAG long form:

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

1 TAG ...

7 6 5 4 3 2 1 0

0 TAG0 TAG

TAG short form:

TAG

7 6 5 4 3 2 1 0

Cl. F. 1 1 1 1 1

7 6 5 4 3 2 1 0

0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

TAG value = 31

0011111

Encoding of a TAG

13

7 6 5 4 3 2 1 0

Cl. F. TAG value

7 6 5 4 3 2 1 0

Cl. F. 1 1 1 1 1

7 6 5 4 3 2 1 0

1 TAG value first ...

7 6 5 4 3 2 1 0

0 TAG valuelast

TAG

TAG long form:

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

1 TAG ...

7 6 5 4 3 2 1 0

0 TAG0 TAG

TAG short form:

TAG

7 6 5 4 3 2 1 0

Cl. F. 1 1 1 1 1

7 6 5 4 3 2 1 0

0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

TAG value = 31

0011111

TAG value = 128 (1000 0000)

7 6 5 4 3 2 1 0

Cl. F. 1 1 1 1 1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

1

7 6 5 4 3 2 1 0

000 0001 000 0000

Encoding of Length
 Length short form (Length <= 127):

 Length long form (Length > 127)

14

7 6 5 4 3 2 1 0

0 Lengthvalue

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 Length of length (N)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Length 1st octet (MSB)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Length Nth octet (LSB)

7 6 5 4 3 2 1 0

...

Encoding of Length
 Length short form (Length <= 127):

 Length long form (Length > 127)

15

7 6 5 4 3 2 1 0

0 Lengthvalue

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 Length of length (N)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Length 1st octet (MSB)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Length Nth octet (LSB)

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1

7 6 5 4 3 2 1 0

Length = 256

...

Encoding of Length
 Length short form (Length <= 127):

 Length long form (Length > 127)

16

7 6 5 4 3 2 1 0

0 Lengthvalue

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 Length of length (N)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Length 1st octet (MSB)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Length Nth octet (LSB)

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

Length = 256

...

Encoding of Length
 Length short form (Length <= 127):

 Length long form (Length > 127)

17

7 6 5 4 3 2 1 0

0 Lengthvalue

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 Length of length (N)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Length 1st octet (MSB)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Length Nth octet (LSB)

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 0 0 0 0 0 1 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

Length = 256

...

Encoding of Length
 Length short form (Length <= 127):

 Length long form (Length > 127)

 Length indefinite form:

18

7 6 5 4 3 2 1 0

0 Lengthvalue

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 Length of length (N)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Length 1st octet (MSB)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Length Nth octet (LSB)

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

1 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

Structured data

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

80H 00H 00H

...

BER Example – NULL, BOOLEAN

19

Class:

• 00 = Universal
• 01 = Application wide

(Standardised type)

• 10 = Context-specific
(SEQUENCE/SET/CHOICE field)

• 11 = Private
(Non standardised type)

Format:

• 0 = Primitive
• 1 = Structured

TAG values for Universal Types:
• 1 = BOOLEAN
• 2 = INTEGER
• 3 = BIT STRING
• 4 = OCTET STRING
• 5 = NULL
• 10 = ENUMERATED
• 16 = SEQUENCE / SEQUENCE OF
• 17 = SET / SET OF
• 22 = IA5String

BOOLEAN (TRUE) 00 0 00001 0 0000001 00000001

TAG Length Value

NULL 00 0 00101 0 0000000

TAG Length V

BER Example – INTEGER

 INTEGER with value of 3

20

00 0 0 0 0 1 0

TAG

0 0 0 0 0 0 0 1

Length

0 0 0 0 0 0 1 1

Value

Class:

• 00 = Universal
• 01 = Application wide

(Standardised type)

• 10 = Context-specific
(SEQUENCE/SET/CHOICE field)

• 11 = Private
(Non standardised type)

Format:

• 0 = Primitive
• 1 = Structured

TAG values for Universal Types:
• 1 = BOOLEAN
• 2 = INTEGER
• 3 = BIT STRING
• 4 = OCTET STRING
• 5 = NULL
• 10 = ENUMERATED
• 16 = SEQUENCE / SEQUENCE OF
• 17 = SET / SET OF
• 22 = IA5String

BER Example – OCTET STRING

 OCTET STRING with value of ‘1F04AB’O

21

Class:

• 00 = Universal
• 01 = Application wide

(Standardised type)

• 10 = Context-specific
(SEQUENCE/SET/CHOICE field)

• 11 = Private
(Non standardised type)

Format:

• 0 = Primitive
• 1 = Structured

TAG values for Universal Types:
• 1 = BOOLEAN
• 2 = INTEGER
• 3 = BIT STRING
• 4 = OCTET STRING
• 5 = NULL
• 10 = ENUMERATED
• 16 = SEQUENCE / SEQUENCE OF
• 17 = SET / SET OF
• 22 = IA5String

00 0 00100 0 0000011 0001 1111

TAG Length Value

0000 0100 1010 1011

BER Example – BIT STRING

 BIT STRING with value of '1111000011'B

22

Class:

• 00 = Universal
• 01 = Application wide

(Standardised type)

• 10 = Context-specific
(SEQUENCE/SET/CHOICE field)

• 11 = Private
(Non standardised type)

Format:

• 0 = Primitive
• 1 = Structured

TAG values for Universal Types:
• 1 = BOOLEAN
• 2 = INTEGER
• 3 = BIT STRING
• 4 = OCTET STRING
• 5 = NULL
• 10 = ENUMERATED
• 16 = SEQUENCE / SEQUENCE OF
• 17 = SET / SET OF
• 22 = IA5String

00000110 11110000 1100000000 0 00011 0 0000011

TAG Length Value

number of
unused bits

(6)

unused bits



BER Example – Array
 Array of 2 INTEGERS: 5 and 10

◼ SEQUENCE OF INTEGER

232323

TAG values for Universal Types:
• 1 = BOOLEAN
• 2 = INTEGER
• 3 = BIT STRING
• 4 = OCTET STRING
• 5 = NULL
• 10 = ENUMERATED
• 16 = SEQUENCE / SEQUENCE OF
• 17 = SET / SET OF
• 22 = IA5String

Class:
• 00 = Universal
• 01 = Application wide

(Standardised type)

• 10 = Context-specific
(SEQUENCE/SET/CHOICE field)

• 11 = Private
(Non standardised type)

Format:
• 0 = Primitive
• 1 = Structured

TAG Length
[SEQUENCE OF]

00 1 10000=30H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 05H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 0AH

06H

User defined TAG - Introduction

 Coordinate ::= SET {

x INTEGER,

y INTEGER

}

◼ in which order the fields transmitted?

 Coordinate ::= SEQUENCE {

x INTEGER OPTIONAL,

y INTEGER OPTIONAL

}

◼ if only one field transmitted: which?

24

User defined TAG values

 Coordinate ::= SET {

x [0] INTEGER,

y [1] INTEGER

}

◼ to interpret: x is type 0, which is actually an INTEGER

 Coordinate ::= SEQUENCE {

x [0] INTEGER OPTIONAL,

y [1] INTEGER OPTIONAL

}

25

Encoding of User Defined TAG values

 x [0] INTEGER

◼ Meaning: x is of a type 0, that is actually an INTEGER

 Encoding:

◼ [0] – Format: 1, since the value contains the type

code of the actual type (INTEGER in this example)

◼ TAG Value: the value in [] (0 in this example)

◼ TAG [0] + Length of the whole data value + TAG of

the actual data type (INTEGER) + Length of the

actual data + Value of the actual data

26

BER Example – SEQUENCE



27

Coordinate ::= [3] SEQUENCE{

x [0] INTEGER OPTIONAL, -- 4

y [1] INTEGER OPTIONAL -- 5

}

BER Example – SEQUENCE



28

TAG Length
[APPLICATION 3]

01 1 00011=63H

TAG Length
[SEQUENCE]

00 1 10000=30H

TAG Length
[Context Specific 0]

10 1 00000=A0H 03H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 04H

TAG

Length Value
[INTEGER]

00 0 00010=02H 01H 05H

Coordinate ::= [3] SEQUENCE{

x [0] INTEGER OPTIONAL, -- 4

y [1] INTEGER OPTIONAL -- 5

}

BER Example – SEQUENCE



29

TAG Length
[APPLICATION 3]

01 1 00011=63H

TAG Length
[SEQUENCE]

00 1 10000=30H

TAG Length
[Context Specific 0]

10 1 00000=A0H 03H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 04H

TAG

Length Value
[INTEGER]

00 0 00010=02H 01H 05H

Coordinate ::= [3] SEQUENCE{

x [0] INTEGER OPTIONAL, -- 4

y [1] INTEGER OPTIONAL -- 5

}

BER Example – SEQUENCE



30

TAG Length
[APPLICATION 3]

01 1 00011=63H

TAG Length
[SEQUENCE]

00 1 10000=30H

TAG Length
[Context Specific 0]

10 1 00000=A0H 03H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 04H

TAG

Length Value
[INTEGER]

00 0 00010=02H 01H 05H

Coordinate ::= [3] SEQUENCE{

x [0] INTEGER OPTIONAL, -- 4

y [1] INTEGER OPTIONAL -- 5

}

BER Example – SEQUENCE



31

TAG Length
[APPLICATION 3]

01 1 00011=63H

TAG Length
[SEQUENCE]

00 1 10000=30H

TAG Length
[Context Specific 0]

10 1 00000=A0H 03H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 04H

TAG

Length Value
[INTEGER]

00 0 00010=02H 01H 05H

Coordinate ::= [3] SEQUENCE{

x [0] INTEGER OPTIONAL, -- 4

y [1] INTEGER OPTIONAL -- 5

}

BER Example – SEQUENCE



32

TAG Length
[APPLICATION 3]

01 1 00011=63H

TAG Length
[SEQUENCE]

00 1 10000=30H

TAG Length
[Context Specific 0]

10 1 00000=A0H 03H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 04H

TAG

Length Value
[INTEGER]

00 0 00010=02H 01H 05H

Coordinate ::= [3] SEQUENCE{

x [0] INTEGER OPTIONAL, -- 4

y [1] INTEGER OPTIONAL -- 5

}

BER Example – SEQUENCE



33

TAG Length
[APPLICATION 3]

01 1 00011=63H

TAG Length
[SEQUENCE]

00 1 10000=30H

TAG Length
[Context Specific 0]

10 1 00000=A0H 03H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 04H

TAG Length
[Context Specific 1]

10 1 00001=A1H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 05H

Coordinate ::= [3] SEQUENCE{

x [0] INTEGER OPTIONAL, -- 4

y [1] INTEGER OPTIONAL -- 5

}

BER Example – SEQUENCE



34

TAG Length
[APPLICATION 3]

01 1 00011=63H

TAG Length
[SEQUENCE]

00 1 10000=30H

TAG Length
[Context Specific 0]

10 1 00000=A0H 03H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 04H

TAG Length
[Context Specific 1]

10 1 00001=A1H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 05H

Coordinate ::= [3] SEQUENCE{

x [0] INTEGER OPTIONAL, -- 4

y [1] INTEGER OPTIONAL -- 5

}

BER Example – SEQUENCE



35

TAG Length
[APPLICATION 3]

01 1 00011=63H

TAG Length
[SEQUENCE]

00 1 10000=30H

TAG Length
[Context Specific 0]

10 1 00000=A0H 03H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 04H

TAG Length
[Context Specific 1]

10 1 00001=A1H 03H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 05H

Coordinate ::= [3] SEQUENCE{

x [0] INTEGER OPTIONAL, -- 4

y [1] INTEGER OPTIONAL -- 5

}

BER Example – SEQUENCE



36

TAG Length
[APPLICATION 3]

01 1 00011=63H

TAG Length
[SEQUENCE]

00 1 10000=30H 0AH

TAG Length
[Context Specific 0]

10 1 00000=A0H 03H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 04H

TAG Length
[Context Specific 1]

10 1 00001=A1H 03H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 05H

Coordinate ::= [3] SEQUENCE{

x [0] INTEGER OPTIONAL, -- 4

y [1] INTEGER OPTIONAL -- 5

}

BER Example – SEQUENCE



37

TAG Length
[APPLICATION 3]

01 1 00011=63H 0CH

TAG Length
[SEQUENCE]

00 1 10000=30H 0AH

TAG Length
[Context Specific 0]

10 1 00000=A0H 03H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 04H

TAG Length
[Context Specific 1]

10 1 00001=A1H 03H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 05H

Coordinate ::= [3] SEQUENCE{

x [0] INTEGER OPTIONAL, -- 4

y [1] INTEGER OPTIONAL -- 5

}

IMPLICIT encoding

 x [0] IMPLICIT INTEGER

 For user TAGged fields, the actual type is not

transmitted

 More compact code, but to decode, the data

structure shall be known by the decoder

 Encoding:

◼ [0] – Format: format of the actual type, since the type

code of the actual type (INTEGER in this example)

NOT transmitted (Format: 0 in this example)

◼ TAG [0] + Length of the actual data + Value of the

actual data
38

BER Example – Implicit SEQUENCE

39

TAG Length
[APPLICATION 3]

01 1 00011=63H 06H

TAG Length Value
[Context Specific 0]

10 0 00000=80H 01H 04H

TAG Length Value
[Context Specific 1]

10 0 00001=81H 01H 05H

Coordinate ::= [3] IMPLICIT SEQUENCE{

x [0] IMPLICIT INTEGER OPTIONAL, -- 4

y [1] IMPLICIT INTEGER OPTIONAL -- 5

}

BER Example – Implicit SEQUENCE

40

TAG Length
[APPLICATION 3]

01 1 00011=63H 06H

TAG Length Value
[Context Specific 0]

10 0 00000=80H 01H 04H

TAG Length Value
[Context Specific 1]

10 0 00001=81H 01H 05H

Coordinate ::= [3] IMPLICIT SEQUENCE{

x [0] IMPLICIT INTEGER OPTIONAL, -- 4

y [1] IMPLICIT INTEGER OPTIONAL -- 5

}

BER Example – Implicit SEQUENCE

41

TAG Length
[APPLICATION 3]

01 1 00011=63H 06H

TAG Length Value
[Context Specific 0]

10 0 00000=80H 01H 04H

TAG Length Value
[Context Specific 1]

10 0 00001=81H 01H 05H

Coordinate ::= [3] IMPLICIT SEQUENCE{

x [0] IMPLICIT INTEGER OPTIONAL, -- 4

y [1] IMPLICIT INTEGER OPTIONAL -- 5

}

BER Example – Implicit SEQUENCE

42

TAG Length
[APPLICATION 3]

01 1 00011=63H 06H

TAG Length Value
[Context Specific 0]

10 0 00000=80H 01H 04H

TAG Length Value
[Context Specific 1]

10 0 00001=81H 01H 05H

Coordinate ::= [3] IMPLICIT SEQUENCE{

x [0] IMPLICIT INTEGER OPTIONAL, -- 4

y [1] IMPLICIT INTEGER OPTIONAL -- 5

}

BER Example – Implicit SEQUENCE

43

TAG Length
[APPLICATION 3]

01 1 00011=63H 06H

TAG Length Value
[Context Specific 0]

10 0 00000=80H 01H 04H

TAG Length Value
[Context Specific 1]

10 0 00001=81H 01H 05H

Coordinate ::= [3] IMPLICIT SEQUENCE{

x [0] IMPLICIT INTEGER OPTIONAL, -- 4

y [1] IMPLICIT INTEGER OPTIONAL -- 5

}

BER Example – Indefinite Length

 Only for Structured types

 Same example as the previous

44

TAG Length
[APPLICATION 3] (indefinite)

01 1 00011=63H 06H

TAG Length Value
[Context Specific 0]

10 0 00000=80H 01H 04H

TAG Length Value
[Context Specific 1]

10 0 00001=81H 01H 05H

TAG "Length "
[End of Content]

00 0 00000=00H 00H

BER Example – Indefinite Length

 Only for Structured types

 Same example as the previous

45

TAG Length
[APPLICATION 3] (indefinite)

01 1 00011=63H 80H

TAG Length Value
[Context Specific 0]

10 0 00000=80H 01H 04H

TAG Length Value
[Context Specific 1]

10 0 00001=81H 01H 05H

TAG "Length "
[End of Content]

00 0 00000=00H 00H

BER Complex Example

46

TAG Length
[APPLICATION 3] (indefinite)

01 1 00101=65H 80H

TAG Length
[Context Specific 0] (indefinite)

10 1 00000=A0H 80H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 04H

TAG "Length"
[End of Content - First Field]

00 0 00000=00H 00H

TAG Length Value
[Context Specific 1]

10 0 00001=81H 03H 05H

TAG "Length"
[End of Content - SEQUENCE]

00 0 00000=00H 00H

Coordinate ::= [5] IMPLICIT SEQUENCE{ -- Indefinite

length encoding

x [0] INTEGER OPTIONAL, -- 4 + Indef. length

y [1] IMPLICIT INTEGER OPTIONAL -- 5

}

BER Complex Example

47

TAG Length
[APPLICATION 5] (indefinite)

01 1 00101=65H 80H

TAG Length
[Context Specific 0] (indefinite)

10 1 00000=A0H 80H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 04H

TAG "Length"
[End of Content - First Field]

00 0 00000=00H 00H

TAG Length Value
[Context Specific 1]

10 0 00001=81H 03H 05H

TAG "Length"
[End of Content - SEQUENCE]

00 0 00000=00H 00H

Coordinate ::= [5] IMPLICIT SEQUENCE{ -- Indefinite

length encoding

x [0] INTEGER OPTIONAL, -- 4 + Indef. length

y [1] IMPLICIT INTEGER OPTIONAL -- 5

}

BER Complex Example

48

TAG Length
[APPLICATION 5] (indefinite)

01 1 00101=65H 80H

TAG Length
[Context Specific 0] (indefinite)

10 1 00000=A0H 80H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 04H

TAG "Length"
[End of Content - First Field]

00 0 00000=00H 00H

TAG Length Value
[Context Specific 1]

10 0 00001=81H 03H 05H

TAG "Length"
[End of Content - SEQUENCE]

00 0 00000=00H 00H

Coordinate ::= [5] IMPLICIT SEQUENCE{ -- Indefinite

length encoding

x [0] INTEGER OPTIONAL, -- 4 + Indef. length

y [1] IMPLICIT INTEGER OPTIONAL -- 5

}

BER Complex Example

49

TAG Length
[APPLICATION 5] (indefinite)

01 1 00101=65H 80H

TAG Length
[Context Specific 0] (indefinite)

10 1 00000=A0H 80H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 04H

TAG "Length"
[End of Content - First Field]

00 0 00000=00H 00H

TAG Length Value
[Context Specific 1]

10 0 00001=81H 03H 05H

TAG "Length"
[End of Content - SEQUENCE]

00 0 00000=00H 00H

Coordinate ::= [5] IMPLICIT SEQUENCE{ -- Indefinite

length encoding

x [0] INTEGER OPTIONAL, -- 4 + Indef. length

y [1] IMPLICIT INTEGER OPTIONAL -- 5

}

BER Complex Example

50

TAG Length
[APPLICATION 5] (indefinite)

01 1 00101=65H 80H

TAG Length
[Context Specific 0] (indefinite)

10 1 00000=A0H 80H

TAG Length Value
[INTEGER]

00 0 00010=02H 01H 04H

TAG "Length"
[End of Content - First Field]

00 0 00000=00H 00H

TAG Length Value
[Context Specific 1]

10 0 00001=81H 01H 05H

TAG "Length"
[End of Content - SEQUENCE]

00 0 00000=00H 00H

Coordinate ::= [5] IMPLICIT SEQUENCE{ -- Indefinite

length encoding

x [0] INTEGER OPTIONAL, -- 4 + Indef. length

y [1] IMPLICIT INTEGER OPTIONAL -- 5

}

How ASN.1 used in 3GPP specifications

 Operations

◼ Parameters of request message: ARGUMENT

◼ Parameters of reply message: RESULT

◼ List of possible errors: ERRORS

◼ Operation code: CODE

 Errors

◼ (Optional) parameters of error: PARAMETER

◼ Error code: CODE

Agile Network Service Development 51

Semi-Formal Definitions

Agile Network Service Development 52

name_of_operation OPERATION ::= {

ARGUMENT

list of parameters at invocation

RESULT

list of parameters at return

ERRORS {

list of error types may occur

during operation execution

}

CODE local: operation_code

}

error_type_name ERROR ::= {

PARAMETER

optional further information

CODE local: error_code

}

MAP Example

Agile Network Service Development 53

checkIMEI OPERATION ::= {

ARGUMENT

imei OCTET STRING (SIZE (3..8))

RESULT

equipmentStatus ENUMERATED {

whiteListed (0),

blackListed (1),

greyListed (2)}

ERRORS {

systemFailure, dataMissing,

unexpectedDataValue, unknownEquipment }

CODE local : 43

}

systemFailure ERROR ::= {

PARAMETER

networkResource ENUMERATED{

plmn (0),

hlr (1),

....

}

CODE local : 34

}

dataMissing ERROR ::= {

CODE local :35

}

Agile Network Service Development 54

mo-ForwardSM OPERATION ::= {

ARGUMENT SEQUENCE {

sm-RP-DA CHOICE {

imsi [0] IMPLICIT OCTET STRING (SIZE(3 .. 8)),

lmsi [1] IMPLICIT OCTET STRING (SIZE(4)),

serviceCentreAddressDA [4] IMPLICIT OCTET STRING (SIZE(1 .. 20)),

noSM-RP-DA [5] IMPLICIT NULL},

sm-RP-OA CHOICE {

msisdn [2] IMPLICIT OCTET STRING (SIZE(1 .. 20)) (SIZE(1 .. 9)),

serviceCentreAddressOA [4] IMPLICIT OCTET STRING (SIZE(1 .. 20)),

noSM-RP-OA [5] IMPLICIT NULL},

sm-RP-UI OCTET STRING (SIZE(1 .. 200)),

extensionContainer SEQUENCE {

privateExtensionList [0] IMPLICIT SEQUENCE (SIZE(1 .. 10)) OF

SEQUENCE {

extId MAP-EXTENSION .&extensionId ({

,

...}) ,

extType MAP-EXTENSION .&ExtensionType ({

,

...} { @extId }) OPTIONAL} OPTIONAL,

pcs-Extensions [1] IMPLICIT SEQUENCE {

... } OPTIONAL,

... } OPTIONAL,

... ,

imsi OCTET STRING (SIZE(3 .. 8)) OPTIONAL}

RESULT SEQUENCE {

sm-RP-UI OCTET STRING (SIZE(1 .. 200)) OPTIONAL,

extensionContainer SEQUENCE {

privateExtensionList [0] IMPLICIT SEQUENCE (SIZE(1 .. 10)) OF

SEQUENCE {

extId MAP-EXTENSION .&extensionId ({

,

...}) ,

extType MAP-EXTENSION .&ExtensionType ({

,

...} { @extId }) OPTIONAL} OPTIONAL,

pcs-Extensions [1] IMPLICIT SEQUENCE {

... } OPTIONAL,

... } OPTIONAL,

... }

ERRORS {

systemFailure |

unexpectedDataValue |

facilityNotSupported |

sm-DeliveryFailure }

CODE local : 46

}

Agile Network Service Development 55

sm-DeliveryFailure ERROR ::= {

PARAMETER SEQUENCE {

sm-EnumeratedDeliveryFailureCause ENUMERATED {

memoryCapacityExceeded (0),

equipmentProtocolError (1),

equipmentNotSM-Equipped (2),

unknownServiceCentre (3),

sc-Congestion (4),

invalidSME-Address (5),

subscriberNotSC-Subscriber (6) },

diagnosticInfo OCTET STRING (SIZE(1 .. 200)) OPTIONAL,

extensionContainer SEQUENCE {

privateExtensionList [0] IMPLICIT SEQUENCE (SIZE(1 .. 10)) OF

SEQUENCE {

extId MAP-EXTENSION .&extensionId ({

,

...}) ,

extType MAP-EXTENSION .&ExtensionType ({

,

...} { @extId }) OPTIONAL} OPTIONAL,

pcs-Extensions [1] IMPLICIT SEQUENCE {

... } OPTIONAL,

... } OPTIONAL,

... }

CODE local : 32

}

