Agile Network Service Development
o ———

ASN.1

Gusztav Adamis
BME TMIT

Data Specification

High level data structure definition
= Only structure
= Can be complicated

Abstract Data Types (~classes)
= Data structure + operations

m Axiomatic
ACT ONE in SDL

= Pragmatic, constructive
C++, JAVA, ...

ASN:.1

Abstract Syntax Notation One
= High level structures
= Originally for Application layer protocols
= Now mainly for mobile protocols

Two parts
= Data Specification

= Encoding Rules
Binary encoding

BER — Basic Encoding Rules
CER — Canonical Encoding Rules
DER — Distinguished Encodig Rules
variations of BER

PER — Packed Encoding Rules
compact encoding
for radio interface protocols

ASN.1 Syntax

UPPERCASE and lowercase characters
different

Keywords — all capital

|dentifiers — start with letter, contains letters,
numbers, and -:

= two consequitive - not allowed
Types — first letter: capital

Other identifiers (e.g. record fields, enumerated
literals) — first letter: lowercase

-- comment till the end of line

ASN.1 Data Type Specification

Universal Types
m INTEGER

= BOOLEAN

m REAL

= NULL

= BIT STRING — “1010'B (length=4)

m OCTET STRING - ‘AB12°0 (length=2)
H

|A5String — "Hello”

other string types: GraphicalString, NumericalString,
PrintableString, etc.

Construction Rules

SEQUENCE ~structure, record

SET — similar, but fields can be transmitted In
any order

OPTIONAL - field may be omitted
DEFAULT
CHOICE — union (only one of the fields)

— Definition symbol

PersonalData SEQUENCE {

age INTEGER DEFAULT 10,
married BOOLEAN OPTIONAL }

Construction Rules ctd.

SEQUENCE OF / SET OF
= arrays

= SEQUENCE OF INTEGER
m SET OF PersonalData

ENUMERATED
Colors ::= ENUMERATED {blue, green, red}

Sub-Types

Small-Integer ::= INTEGER(0..9)
SmallPrimes ::= INTEGER(2|31]5]7)

Arrayo4 ::= SEQUENCE SIZE (64..64) OF
INTEGER

® or

Arrayo4 ::= SEQUENCE SIZE (64) OF INTEGER
ArrayMax64d::= SEQUENCE SIZE (1..64) OF
INTEGER

Bit8 ::= BIT STRING SIZE (8)

Telephone—-Number ::=
IASString (FROM('1'"|'"2"|'3"|"4"|'S5"|'e" | "7/
||8'||9l|'0'|'*||'#'))

BER — Basic Encoding Rules

Each data is sent as a triplet:

TAG + Length + Value (TLV)
m TAG ~ Type Code
= Simple Types
‘Value’ is really the value

= Structured Types

At ‘Value’: new TAG+Length+Value triplet(s) stand
recoursively

E.g.: Value of a SEQUENCE is the list of its fields

Encoding of a TAG

TAG
765 4321 0

Cl| F|TAGvalue

f:(l)%s_szu . | TAG values for Universal Types:
00 - Anl\:fers:. g e 1 =BOOLEAN
= Application wide e 2 = INTEGER

(Standardised type)
* 10 = Context-specific
(SEQUENCE/SET/CHOICE field)
* 11 = Private
(Non standardised type)

* 3 = BIT STRING

* 4 = OCTET STRING

*5=NULL

* 10 = ENUMERATED

* 16 = SEQUENCE / SEQUENCE OF
Format: 17 = SET / SET OF

* 0 = Primitive * 22 = |A5String

e 1 = Structured 10

Encoding of a TAG

TAG short form:
7 6 5 4 3 2 1 O

Cl| F|TAGvalue
TAG long form:

/7 6 543 210 /7 6 543210

Cl.IF|1 1111 1|TAG value first

Class:
* 00 = Universal
* 01 = Application wide
(Standardised type)
* 10 = Context-specific
(SEQUENCE/SET/CHOICE field)
* 11 = Private
(Non standardised type)

Format:
* 0 = Primitive
e 1 = Structured

Max short value = 30 (11110)

76543210
O [TAG valuelast

TAG values for Universal Types:
*1 =BOOLEAN

* 2 = INTEGER

* 3 = BIT STRING

* 4 = OCTET STRING

*5=NULL

* 10 = ENUMERATED

* 16 = SEQUENCE / SEQUENCE OF
17 = SET / SET OF

* 22 = |A5String

11

Encoding of a TAG

TAG short form:
7 6 5 4 3 2 1 O

Cl| F|TAGvalue
TAG long form:

76543210 76543210 76543210
ClL{[F{1 1111 |1[TAGvalue first| |Q[TAG valuelast
TAG value = 31

7 6 543210 7 6 543210
cl.iFl1 1111 |[go o011

Encoding of a TAG

TAG short form:
7 6 5 4 3 2 1 O

Cl| F|TAGvalue
TAG long form:

76543210 76543210 76543210
ClL{[F{1 1111 |1[TAGvalue first| |Q[TAG valuelast
TAG value = 31

7 6 543210 7 6 543210
cl.iFl1 1111 |[go o011

TAG value = 128 (1000 0000)
7 6 543210 7 6 543210 76543210

ClL{[FI1 1111 |1 000 0001 0 000 0000

Encoding of Length
Length short form (Length <= 127):

76543210
Q|Lengthvalue

Length long form (Length > 127)

76 543210 76 543210 76 543210

1 |Length of length (N)‘ ‘Length 1st octet (MSB) ‘Length Nth octet (LSB)

14

Encoding of Length
Length short form (Length <= 127):

76543210
Q|Lengthvalue

Length long form (Length > 127)

7 6 543210 7 6 543210 7 6 543210
1 |Length of length (N)‘ ‘Length 1st octet (MSB) ‘Length Nth octet (LSB)
Length = 256

/7 6 543 2 10
1

15

Encoding of Length
Length short form (Length <= 127):

76543210
Q|Lengthvalue

Length long form (Length > 127)

7 6 543210 7 6 543210 7 6 543210
1 |Length of length (N)‘ ‘Length 1st octet (MSB) ‘Length Nth octet (LSB)
Length = 256

7 6 543210 76543210765 43210
1 0O00O0OOO 11000 OO0OO0O0OO

16

Encoding of Length

Length short form (Length <= 127):

/7 6 543210

Q|Lengthvalue

Length long form (Length > 127)

76 543210

76 543210 76 543210

1 |Length of length (N)‘

‘Length 1st octet (MSB) ‘Length Nth octet (LSB)

Length = 256

7 6 543210 765432107635 43210

10000010

000 O0OO0OO1

000 O0OO0OOO0O

17

Encoding of Length

Length short form (Length <= 127):

/7 6 543210

Q|Lengthvalue

Length long form (Length > 127)

76 543210

76 543210

1 |Length of length (N)‘

‘Length 1st octet (MSB)

76 543210

Length indefinite form:

/7 6 543210

‘Length Nth octet (LSB)

76 543210765432 10

100 00O0O0O

Structured data

000 O0O0O0OO0DO

000 O0OO0OO0OO

80H

OOH

OOH

18

BER Example - NULL, BOOLEAN

NULL

BOOLEAN (TRUE)

Class:
* 00 = Universal
* 01 = Application wide
(Standardised type)
* 10 = Context-specific
(SEQUENCE/SET/CHOICE field)
* 11 = Private
(Non standardised type)

Format:
* 0 = Primitive
e 1 = Structured

TAG Length)}(
100 0 00102{0 0000000

TAG Length Value
‘oo 0 00001‘0 0000001‘ 00000001 ‘

TAG values for Universal Types:
* 1 =BOOLEAN

* 2 = INTEGER

* 3 = BIT STRING

* 4 = OCTET STRING

*5=NULL

* 10 = ENUMERATED

* 16 = SEQUENCE / SEQUENCE OF
e 17 = SET / SET OF

* 22 = |A5String

19

BER Example — INTEGER
INTEGER with value of 3

TAG Length Value

0010100010 OOOOOOOllOOOOOOll

Class:
*00= Unlv?rsa.l) TAG values for Universal Types:
* 01 = Application wide e 1 = BOOLEAN
(Standardised type) e 2 = INTEGER
* 10 = Context-specific * 3 = BIT STRING
(SEQUENCE/SET/CHOICE field) * 4 = OCTET STRING
* 11 = Private °*5=NULL
(Non standardised type) * 10 = ENUMERATED
e 16 = SEQUENCE / SEQUENCE OF
Format: e 17 = SET / SET OF
* 0 = Primitive 22 = |A5String

e 1 = Structured 20

BER Example — OCTET STRING

OCTET STRING with value of "1FO4AB’O

TAG Length Value
‘oo 0 00100‘0 0000011‘0001 1111‘ 0000 0100‘ 1010 1011‘

Class:
* 00 = Universal

TAG values for Universal Types:
* 01 = Application wide P

1 =BOOLEAN
(Standardised type) e 2 = INTEGER
* 10 = Context-specific * 3 = BIT STRING
(SEQUENCE/SET/CHOICE field) * 4 = OCTET STRING
* 11 = Private *5=NULL
(Non standardised type) * 10 = ENUMERATED
* 16 = SEQUENCE / SEQUENCE OF
Format:

17 =SET / SET OF
* 0 = Primitive 22 = |A5String

e 1 = Structured

21

BER Example — BIT STRING

BIT STRING with value of '1111000011'B

TAG Length Value

100 0 00011|0 0000011/00000110]11110000| 11 |
number of unused bits
unuse6d bits

Class: ©)
*00= Unlv?rsa.l) TAG values for Universal Types:
* 01 = Application wide e 1 = BOOLEAN
(Standardised type) e 2 = INTEGER
* 10 = Context-specific * 3 = BIT STRING
(SEQUENCE/SET/CHOICE field) * 4 = OCTET STRING
* 11 = Private *5=NULL
(Non standardised type) * 10 = ENUMERATED
* 16 = SEQUENCE / SEQUENCE OF
Format: e 17 = SET / SET OF
* 0 = Primitive 22 = |A5String

e 1 = Structured

22

BER Example — Array

Array of 2 INTEGERS: 5 and 10
m SEQUENCE OF INTEGER

TAG
[SEQUENCE OF]

00 1100

[INTEGER]
00 0 00010=02H O1H O5H

TAG Length Value
[INTEGER]

00 0 00010=02H

Class:
* 00 = Universal

S —

« 01 = Application wide TAG values for Universal Types:
(Standardised type) *1=BOOLEAN

* 10 = Context-specific * 2 =INTEGER
(SEQUENCE/SET/CHOICE field) * 3 = BITSTRING

e 11 = Private * 4 = OCTET STRING
(Non standardised type) *5=NULL

« 10 = ENUMERATED

« 16 = SEQUENCE / SEQUENCE OF

« 17 = SET / SET OF

« 22 = IA5String 23

Format:
* 0 = Primitive
e 1 = Structured

User defined TAG - Introduction

Coordinate ::= SET {
x INTEGER,
y INTEGER

}
= In which order the fields transmitted?

Coordinate ::= SEQUENCE {
x INTEGER OPTIONAL,
y INTEGER OPTIONAL

}
= if only one field transmitted: which?

24

User defined TAG values

Coordinate ::= SET {
x [0] INTEGER,
y [1] INTEGER

}
= to interpret: x is type 0, which is actually an INTEGER

Coordinate ::= SEQUENCE {
x [0] INTEGER OPTIONAL,
vy [1] INTEGER OPTIONAL

J

25

Encoding of User Defined TAG values

X [0] INTEGER
= Meaning: x is of a type 0, that is actually an INTEGER
Encoding:

= [0] — Format: 1, since the value contains the type
code of the actual type (INTEGER in this example)

= TAG Value: the value in [] (O in this example)

= TAG [0] + Length of the whole data value + TAG of
the actual data type (INTEGER) + Length of the
actual data + Value of the actual data

26

BER Example - SEQUENCE

Coordinate ::= [3] SEQUENCE{
x [0] INTEGER OPTIONAL, -- 4
y [1] INTEGER OPTIONAL -- 5

}

27

BER Example - SEQUENCE

Coordinate ::= [3] SEQUENCE{
x [0] INTEGER OPTIONAL, -- 4
y [1] INTEGER OPTIONAL -- 5
}

TAG Length

[APPLICATION 3]
011 00011=63H

28

BER Example - SEQUENCE

Coordinate ::= [3] SEQUENCE{
x [0] INTEGER OPTIONAL, -- 4
y [1] INTEGER OPTIONAL -- 5
}

TAG Length

[APPLICATION 3]
011 00011=63H

TAG Length
[SEQUENCE]

00 1 10000=30H

29

BER Example - SEQUENCE

Coordinate ::= [3] SEQUENCE{
x [0] INTEGER OPTIONAL, -- 4
y [1] INTEGER OPTIONAL -- 5
}

TAG Length

[APPLICATION 3]
011 00011=63H

TAG Length
[SEQUENCE]

00 1 10000=30H

TAG Length
[Context Specific 0]

10 1 00000=A0H

30

BER Example - SEQUENCE

Coordinate ::= [3] SEQUENCE{
x [0] INTEGER OPTIONAL, -- 4
y [1] INTEGER OPTIONAL -- 5
}

TAG Length

[APPLICATION 3]
011 00011=63H
TAG Length
[SEQUENCE]
00 1 10000=30H
TAG Length
[Context Specific 0]

10 1 00000=A0H

TAG
[INTEGER]

00 0 00010=02H

Length

01H

Value

04H

31

BER Example - SEQUENCE

Coordinate ::= [3] SEQUENCE{
x [0] INTEGER OPTIONAL, -- 4
y [1] INTEGER OPTIONAL -- 5
}

TAG Length

[APPLICATION 3]
011 00011=63H

TAG Length
[SEQUENCE]

00 1 10000=30H

TAG
[Context Specific 0]

10 1 00000=A0H

[INTEGER]
00 0 00010=02H

32

BER Example - SEQUENCE

Coordinate ::= [3] SEQUENCE/{
x [0] INTEGER OPTIONAL, -- 4
y [1] INTEGER OPTIONAL -- 5
}
TAG Length
[APPLICATION 3]
01 1 00011=63H
TAG Length
[SEQUENCE]
00 1 10000=30H
TAG Length

[Context Specific 0]
10 1 O0000=A0H O3H

TAG Length

[INTEGER]

00 0 00010=02H 01H
TAG Length

[Context Specific 1]
10 1 00001=A1H

Value

04H

33

BER Example - SEQUENCE

Coordinate ::= [3] SEQUENCE/{
x [0] INTEGER OPTIONAL, -- 4
y [1] INTEGER OPTIONAL -- 5
}
TAG Length
[APPLICATION 3]
01 1 00011=63H
TAG Length
[SEQUENCE]
00 1 10000=30H
TAG

[Context Specific 0]
10 1 O0000=A0H

TAG
[Context Specific 1]

10 1 00001=A1H

Length

03H

TAG Length
[INTEGER]

00 0 00010=02H 01H 04H
Length

Value

TAG Length Value
[INTEGER]

00 0 00010=02H

BER Example - SEQUENCE

Coordinate ::= [3] SEQUENCE{
x [0] INTEGER OPTIONAL, -- 4
y [1] INTEGER OPTIONAL -- 5
}

TAG Length

[APPLICATION 3]
011 00011=63H

TAG Length
[SEQUENCE]

00 1 10000=30H

Length

[Context Specific 0]
10 1 O0000=A0H O3H

TAG Length
[INTEGER]

00 0 00010=02H 01H

TAG Length
[Context Specific 1]

10 1 00001=A1H 03H

TAG Length
[INTEGER]

00 0 00010=02H 01H

35

BER Example - SEQUENCE

Coordinate ::= [3] SEQUENCE{
x [0] INTEGER OPTIONAL, -- 4
y [1] INTEGER OPTIONAL -- 5
}

TAG Length

[APPLICATION 3]
011 00011=63H

AG Length
[SEQUENCE]
00 1 10000=30H OAH

TAG
[Context Specific 0]

10 1 00000=A0H

TAG
[Context Specific 1]

10 1 00001=A1H

Length

03H

TAG
[INTEGER]

00 0 00010=02H 01H 04H
Length

Length Value

03H

TAG
[INTEGER]

00 0 00010=02H 01H O5H

Length Value

36

BER Example - SEQUENCE

Coordinate ::= [3] SEQUENCE/{
x [0] INTEGER OPTIONAL, -- 4
y [1] INTEGER OPTIONAL -- 5
}
TAG Length
[APPLICATION 3]
01 1 00011=63H OCH
TAG Length
[SEQUENCE]
00 1 10000=30H OAH
TAG Length

[Context Specific 0]
10 1 O0000=A0H O3H

TAG Length

[INTEGER]

00 0 00010=02H 01H
TAG Length

[Context Specific 1]
10 1 00001=A1H O3H

TAG Length
[INTEGER]

00 0 00010=02H 01H

Value

04H

Value

O5H

37

IMPLICIT encoding
X [0] IMPLICIT INTEGER

For user TAGged fields, the actual type is not
transmitted

More compact code, but to decode, the data
structure shall be known by the decoder
Encoding:

= [0] — Format: format of the actual type, since the type
code of the actual type (INTEGER in this example)
NOT transmitted (Format: O in this example)

= TAG [0] + Length of the actual data + Value of the
actual data

38

BER Example — Implicit SEQUENCE

Coordinate ::= [3] IMPLICIT SEQUENCE{
x [0] IMPLICIT INTEGER OPTIONAL, -- 4
vy [1] IMPLICIT INTEGER OPTIONAL -- 5

}

39

BER Example — Implicit SEQUENCE

Coordinate ::= [3] IMPLICIT SEQUENCE{
x [0] IMPLICIT INTEGER OPTIONAL, -- 4
vy [1] IMPLICIT INTEGER OPTIONAL -- 5
}

TAG Length

[APPLICATION 3]
01 1 00011=63H

40

BER Example — Implicit SEQUENCE

Coordinate ::= [3] IMPLICIT SEQUENCE{
x [0] IMPLICIT INTEGER OPTIONAL, -- 4
vy [1] IMPLICIT INTEGER OPTIONAL -- 5
}

TAG Length

[APPLICATION 3]
01 1 00011=63H

TAG Length Value
[Context Specific O]

10 0 00000=80H O1H 04H

41

BER Example — Implicit SEQUENCE

Coordinate ::= [3] IMPLICIT SEQUENCE{
x [0] IMPLICIT INTEGER OPTIONAL, -- 4
vy [1] IMPLICIT INTEGER OPTIONAL -- 5

}

TAG Length
[APPLICATION 3]

01 1 00011=63

TAG
[Context Specific O]

10 0 00000=80H

TAG
[Context Specific 1]

10 0 00001=81H

42

BER Example — Implicit SEQUENCE

Coordinate ::= [3] IMPLICIT SEQUENCE{
x [0] IMPLICIT INTEGER OPTIONAL, -- 4
vy [1] IMPLICIT INTEGER OPTIONAL -- 5
}

TAG Length

[APPLICATION 3]
01 100011=63H O6H

TAG Length Value
[Context Specific O]

10 0 00000=80H O1H O4H
TAG Length Value

[Context Specific 1]
10 0 00001=81H O1H O5H

BER Example — Indefinite Length

Only for Structured types
Same example as the previous

TAG Length

[APPLICATION 3]

01 1 00011=63H O6H
TAG

[Context Specific 0]
10 0 0O0000=80H

TAG
[Context Specific 1]

10 0 00001=81H

Length

O1H
Length

O1H

Value

04H

Value

O5H

44

BER Example — Indefinite Length

Only for Structured types
Same example as the previous

TAG Length

[APPLICATION 3] (indefinite)

011 00011=63H 80H
TAG Length
[Context Specific 0]
10 0 00000=80H 01H
TAG Length
[Context Specific 1]
10 0 00001=81H O1H

TAG "Length "

[End of Content]
00 0 00000=00H OOH

Value

04H

Value

O5H

45

BER Complex Example

Coordinate ::= [5] IMPLICIT SEQUENCE({
length encoding
x [0] INTEGER OPTIONAL, -- 4 + Indef.

y [1] IMPLICIT INTEGER OPTIONAL -- 5
}

—— Indefinite

length

46

BER Complex Example

Coordinate ::= [5] IMPLICIT SEQUENCE({
length encoding
x [0] INTEGER OPTIONAL, -- 4 + Indef.
y [1] IMPLICIT INTEGER OPTIONAL -- 5
: TAG Length

[APPLICATION 5] (indefinite)

011 00101=65H 80H

TAG "Length”
[End of Content - SEQUENCE]

00 0 00000=00H OOH

—— Indefinite

length

a7

BER Complex Example

Coordinate ::= [5] IMPLICIT SEQUENCE{ —-- Indefinite
length encoding
x [0] INTEGER OPTIONAL, -- 4 + Indef. length
y [1] IMPLICIT INTEGER OPTIONAL -- 5
: TAG Length
[APPLICATION 5] (indefinite)
01 100101=65H 80H
TAG Length
[Context Specific 0] (indefinite)

10 1 00000=A0H 80H

TAG "Length"
[End of Content - First Field]

00 0 00000=00H OOH

TAG "Length”
[End of Content - SEQUENCE]

00 0 00000=00H OOH

48

BER Complex Example

Coordinate ::= [5] IMPLICIT SEQUENCE{ -- Indefinite
length encoding

x [0] INTEGER OPTIONAL, -- 4 + Indef. length

y [1] IMPLICIT INTEGER OPTIONAL -- 5

}

TAG Length
[APPLICATION 5] (indefinite)

01 1 00101=65H 80H

TAG Length
[Context Specific 0] (indefinite)

10 1 00000=A0H 80H

TAG Length Value
[INTEGER]

00 0 00010=02H O1H 04H

TAG "Length"
[End of Content - First Field]

00 0 00000=00H OOH

TAG "Length”
[End of Content - SEQUENCE]

00 0 00000=00H OOH

BER Complex Example

Coordinate ::= [5] IMPLICIT SEQUENCE{ —-- Indefinite
length encoding
x [0] INTEGER OPTIONAL, -- 4 + Indef. length
y [1] IMPLICIT INTEGER OPTIONAL -- 5
: TAG Length
[APPLICATION 5] (indefinite)
011 00101=65H 80H
TAG Length
[Context Specific 0] (indefinite)
10 1 00000=A0H 80H
TAG Length Value
[INTEGER]
00 0 00010=02H O1H 04H
TAG "Length"

[End of Content - First Field]
00 0 00000=00H OOH

TAG Length Value
[Context Specific 1]

10 0 00001=81H O1H O05H

TAG "Length”
[End of Content - SEQUENCE]

00 0 00000=00H OOH

50

How ASN.1 used in 3GPP specifications

Operations

m Parameters of request message: ARGUMENT
= Parameters of reply message: RESULT

= List of possible errors: ERRORS

= Operation code: CODE

Errors
= (Optional) parameters of error: PARAMETER
= Error code: CODE

Agile Network Service Development

51

Semi-Formal Definitions

name of operation OPERATION ::={

ARGUMENT

list of parameters at invocation
RESULT

list of parameters at return
ERRORS {

list of error types may ocCccur

during operation execution

}

CODE local: operation code

error type name ERROR :={
PARAMETER
optional further information

CODE local: error code

Agile NetworL Service Development

52

MAP Example

checkIMEI OPERATION = {
ARGUMENT
imei OCTET STRING (SIZE (3..8))
RESULT

equipmentStatus ENUMERATED {
whiteListed (0),
blackListed (1),
greyListed (2)}
ERRORS ({
systemFailure, dataMissing,
unexpectedDataValue, unknownEquipment }
CODE local : 43

systemFailure ERROR {

PARAMETER
networkResource ENUMERATED/{
plmn (0),
hlr (1),

}
CODE local : 34
}
dataMissing ERROR
CODE 1local :35

{

Agile Netv}vork Service Development

53

mo-ForwardSM OPERATION ::= {
ARGUMENT SEQUENCE {

sm-RP-DA CHOICE {
imsi [0] IMPLICIT OCTET STRING (SIZE(3..8)),
Imsi [1] IMPLICIT OCTET STRING (SIZE(4)),

~ServiceCentreAddressDA {2 MPEICIT OCTET STRING (SIZE(T207)7);

noSM-RP-DA [5] IMPLICIT NULL},

sm-RP-OA CHOICE {
msisdn [2] IMPLICIT OCTET STRING (SIZE(1..20)) (SIZE(1..9)),
serviceCentreAddressOA [4] IMPLICIT OCTET STRING (SIZE(1..20)),
noSM-RP-OA [5] IMPLICIT NULL},

sm-RP-UI OCTET STRING (SIZE(1 .. 200)),

extensionContainer SEQUENCE {
privateExtensionList [0] IMPLICIT SEQUENCE (SIZE(1..10)) OF
SEQUENCE {
extld MAP-EXTENSION .&extensionld ({

1),
extType MAP-EXTENSION .&ExtensionType ({

.}{@extld }) OPTIONAL} OPTIONAL,
pcs-Extensions [1] IMPLICIT SEQUENCE {
... } OPTIONAL,
... } OPTIONAL,
imsi OCTET STRING (SIZE(3..8)) OPTIONAL}
RESULT SEQUENCE {
sm-RP-UI OCTET STRING (SIZE(1..200)) OPTIONAL,
extensionContainer SEQUENCE {
privateExtensionList [0] IMPLICIT SEQUENCE (SIZE(1..10)) OF
SEQUENCE {
extld MAP-EXTENSION .&extensionld ({

1),
extType MAP-EXTENSION .&ExtensionType ({

.}{@extld }) OPTIONAL} OPTIONAL,
pcs-Extensions [1] IMPLICIT SEQUENCE {
... } OPTIONAL,
... } OPTIONAL,
.}
ERRORS {
systemFailure |
unexpectedDataValue |
facilityNotSupported |
sm-DeliveryFailure }
CODE local :46
} Agile Network Service Development

54

sm-DeliveryFailure ERROR ::= {
PARAMETER SEQUENCE {
sm-EnumeratedDeliveryFailureCause ENUMERATED {
memoryCapacityExceeded (0),
equipmentProtocolError (1),
equipmentNotSM-Equipped (2),

unknownServiceCentre (3),

sc-Congestion (4),

invalidSME-Address (5),

subscriberNotSC-Subscriber (6) },
diagnosticinfo OCTET STRING (SIZE(1 ..200)) OPTIONAL,
extensionContainer SEQUENCE {

privateExtensionList [0] IMPLICIT SEQUENCE (SIZE(1..10)) OF

SEQUENCE {

extld MAP-EXTENSION .&extensionld ({

1),
extType MAP-EXTENSION .&ExtensionType ({

..J{@extld }) OPTIONAL} OPTIONAL,
pcs-Extensions [1] IMPLICIT SEQUENCE {
... } OPTIONAL,
... } OPTIONAL,

o}
CODE local 132

}

Agile Network Service Development

