
MBT –
Model-Based

Testing

Gusztáv Adamis
adamis@tmit.bme.hu

› Manual execution

– Slow

– Time consuming

– Documentation

– E.g. GUI test

› Though several solutions of partly

automating (Selenium, Jasmine)

› In most of the cases automation

is necessary to achieve

acceptable coverage in

acceptable time frame

Manual Testing

Agile Network Service Development 2

› Test programs (scripts) to write

– Time

› Test execution tool to develop

– Time

› But when they are ready, fast

execution

› Problems:

– Test development

– Test validation

– Test maintenance

Automated Testing
(Test Scripts)

Agile Network Service Development 3

› Automatic (abstract) test

case generation

– Different strategies, goals

– Model shall be verified,

generated tests are correct

– Any change in specification ->

Re-generate the tests

› No need to touch the test

scripts

› Easier maintenance

– Problem:

› Test Harness

› Good only for ‘green field’

test development

Model-Based Testing

Agile Network Service Development 4

MBT At different
levels

Agile Network Service Development 5

› Measuring the adequacy of a test suite

– Coverage

› Deciding when to stop test generation

› Typically 100% coverage is not possible

– Time consuming

– Non-reachable states

› Theoretically – if the model is wrong

› Practically – complex guards, lot of variables

Test Generation
Algorithms

Agile Network Service Development 6

› Most of them can also be applied to code, but now for

MODEL

– Not the same

– Both shall be tested

› Structural Model Coverage

› Data Coverage

› Fault-Model

› Requirements-Based

› Explicit Test Case Specification

Classification of Test
Selection Criteria

Agile Network Service Development 7

› Mainly for code, but

– For models in (E)FSM, UML, OCL, etc. : Decisions, Pre/Post

conditions

› Statement Coverage (SC)

– execute every reachable statement

› Decision (or Branch) Coverage (DC)

– each reachable decision is made true by some tests and false by

other tests

› Condition Coverage

– each condition is tested with a true and with a false result

› Path Coverage (PC)

– execute every satisfiable path through the control-flow graph

– generally impossible to reach (loops!)

Control-Flow-Oriented
Coverage Criteria

Agile Network Service Development 8

context SmartCard::verifyPin(p:PIN_CODES):MESSAGES

post:

if pinTry = 0 then

result = MESSAGES::NO_MORE_TRIES

else

if (p=pin or statusPin=PINSTATUS::DISABLE) then

result = MESSAGES::SUCCESS

else

result = MESSAGES::ERROR

endif

endif

Control-Flow-Oriented
Coverage Criteria

Agile Network Service Development 9

› For code

› Definition (assignment to) and use of variables

– Data Flow Graphs

– Definition-use paths

› All-Defs

– test at least one def-use pair (dv, uv) for every definition dv, that is, at

least one path from each definition to one of its feasible uses

› All-Uses

– test all def-use pairs (dv, uv). (testing all feasible uses of all defs)

› All-Def-Use-Paths

– test all def-use pairs (dv, uv) and to test all paths from dv, to uv

– Practically unrealistic

Data-Flow-Oriented
Coverage Criteria

Agile Network Service Development 10

› For (E)FSM, LTS, UML state charts, etc. models

› All-states Coverage

– Every state of the model is

visited at least once

› e.g. ACG e.g. ACE

Transition-Based
Coverage Criteria

Agile Network Service Development 11

› All-transitions Coverage

– Every transition of the model must be traversed at least once

– e.g. ACEFG + BD

– e.g. ACEFG + BDG (if shall end at final state)

ABCED or ABCEDCD

D is one or two transactions?

Transition-Based
Coverage Criteria

Agile Network Service Development 12

› All-transition-pairs Coverage

– Every pair of adjacent transitions in the FSM or statechart model

must be traversed at least once

› For S2:

– AC+AD+BC+BD

Transition-Based
Coverage Criteria

Agile Network Service Development 13

› All-loop-free-paths Coverage:

– Every loop-free path must be traversed at least once

– ACG + ADG + BCG + BDG

› Does not cover all transitions or even all states!

› All-one-loop-paths Coverage

– Every path containing at most two repetitions of one (and only one)

state must be traversed at least once

– All the loop-free paths and all the paths that loop once

› 4*3 = 12 test cases

Transition-Based
Coverage Criteria

Agile Network Service Development 14

› All-paths Coverage

– Every path must be traversed at least once (exhaustive testing)

– If loop: infinite number of paths

– ACG+ADG+BCG+BDG+ACEG+ACEEG+….

Transition-Based
Coverage Criteria

Agile Network Service Development 16

› All-loop-free-paths, All-one-loop-paths are inadequate on

their own, since they do not guarantee to cover all

transitions or even all states

– Extreme example: in the first state we have to take a loop at least

twice, nothing else than the first state is reachable…

› In practice, the All-transition Coverage is the minimum to

reach

Transition-Based
Coverage Criteria

Agile Network Service Development 17

› For choosing a few good data values to use as test inputs

when there is a huge number of possible input values

› Two extremes:

– One-value: simply requires to test at least one value from the

domain D. Often too simple.

– All-values: requires to test every value in the domain D.

› This is not practical if D is large (e.g., 0. . 999999), but when D is

small, such as an enumerated type, it can be useful to test all

possibilities

data Coverage Criteria

Agile Network Service Development 19

› A valid password contains 6..10 characters

– Equivalent partitions:

› 0..5 – shall not accept

› 6..10 – shall accept

› 11.. – shall not accept

› Choose any value from the partitions

- E.g. 3, 7, 186

– Boundary value testing

› Lots of faults in the SUT are located at the boundary between

two functional behaviours

› 5, 6, (7), (9), 10, 11

Equivalent partitioning and
boundary value testing

Agile Network Service Development 20

Assume, we have to test a field which accepts Age 18 – 56

Boundary Value Testing

Agile Network Service Development 21

https://i2.wp.com/www.softwaretestingmaterial.com/wp-content/uploads/2016/03/Boundary-Value-Analysis-1.png?ssl=1

Assume, we have to test a field which accepts Age 18 – 56

Minimum boundary value is 18
Maximum boundary value is 56
Valid Inputs: 18,19,55,56
Invalid Inputs: 17 and 57

Test case 1: Enter the value 17 (18-1) = Invalid
Test case 2: Enter the value 18 = Valid
Test case 3: Enter the value 19 (18+1) = Valid
Test case 4: Enter the value 55 (56-1) = Valid
Test case 5: Enter the value 56 = Valid

Test case 6: Enter the value 57 (56+1) =Invalid

Boundary Value Testing

Agile Network Service Development 22

https://i2.wp.com/www.softwaretestingmaterial.com/wp-content/uploads/2016/03/Boundary-Value-Analysis-1.png?ssl=1

› Choose test input values at the boundaries of the input

domains

– Lots of faults in the SUT are located at the boundary between two

functional behaviours

Speed = 0, (1), 49, 50, (51), 300

Rain_level = 0, (1), (4), 5, 6, 10

Speed= 0, Rain_level = 0

Speed= 0, Rain_level = 1, …

Speed= 1, Rain_level = 0, …

Speed= 300, Rain_level = 10

Boundary Value Testing

Agile Network Service Development 23

wiper slow

wiper fast

If Speed >= 50

OR Rain_level > 5

Speed := 0..300

Rain_level := 0..10

› Pairwise testing is based on the assumption that most

defects are created as a result of no more than two test

parameters (test values) being in a certain combination

› E.g.:

– Destinations: Canada, Mexico, USA

– Class: Tourist, Business, First

– Seat: Aisle, Window

› Exhaustive testing:

– 3*3*2 = 18 combinations

Pairwise testing

Agile Network Service Development 25

› Assume: USA, Tourist

causes the problem

› Pairwise test

generation:

– Test 18:

› USA, First: in 9,

› USA, Window: in 15,

› First, Window: in 17

– Test 18 is redundant,

etc.

Pairwise testing

Agile Network Service Development 26

Test Destination Class Seat Preference

1 Canada Tourist Aisle

2 Mexico Tourist Aisle

3 (defect!) USA Tourist Aisle

4 Canada Business Class Aisle

5 Mexico Business Class Aisle

6 USA Business Class Aisle

7 Canada First Class Aisle

8 Mexico First Class Aisle

9 USA First Class Aisle

10 Canada Tourist Window

11 Mexico Tourist Window

12 (defect!) USA Tourist Window

13 Canada Business Class Window

14 Mexico Business Class Window

15 USA Business Class Window

16 Canada First Class Window

17 Mexico First Class Window

18 USA First Class Window

› 9 tests instead of 18

› Still finds the problem

Pairwise testing

Agile Network Service Development 27

Number Destination Class
Seat

Preference

1 Canada Tourist Aisle

3

(defect!)
USA Tourist Aisle

5 Mexico
Business

Class
Aisle

8 Mexico First Class Aisle

9 USA First Class Aisle

11 Mexico Tourist Window

13 Canada
Business

Class
Window

15 USA
Business

Class
Window

16 Canada First Class Window

› More effective if much higher combinations

– If 10 variables with 5 values each

› 510=9 765 625 exhaustive tests

› Only 44 pairwise tests

– If 75 binary variables

› 275 = 37 778 931 862 957 161 709 568 exhaustive tests

› Only 28 pairwise tests

› Complicated test generation algorithms

› N-wise coverage

– If suppose that the problem depends on N values instead 2

– Number of tests rapidly grows as N increases

– All-triples can still be practical, but all-quadruples are ~not

Pairwise testing

Agile Network Service Development 28

› Pre-specified faults

– Typically frequently occurred ones

– Mutation operators: e.g. substitute + with - in expressions

– Generate tests for each mutant of the original program,

› Design a test that distinguishes that mutant from the original

program

› The resulting test suite is therefore able to show, which faults are

NOT in the SUT

- Fault-finding Power

Fault-Based testing

Agile Network Service Development 29

› High-level, testable statements of functionalities

› Each requirement shall be tested (e.g. in acceptance tests)

› In MBT two typical solutions:

– 1. Record the requirements inside the behavior model (as

annotations on various parts of the model) so that the test

generation process can ensure that all requirements have been

tested

– 2. Formalize each requirement and then use that formal expression

as a test selection criterion to drive the automated generation of one

or more tests from the behavior model

› Explicit test case specifications

Requirements-Based
Criteria

Agile Network Service Development 30

› Some explicit requirements are given in the model

– E.g.: Test shall contain this state

› Generate test

– For typical or for less typical cases

– Just for a given service

– Etc.

Explicit Test Case
Specification

Agile Network Service Development 31

Test Selection in an
MBT ToOl (Conformiq)

Agile Network Service Development 32

Test Selection in an
MBT ToOl (Conformiq)

Agile Network Service Development 33

Agile Network Service Development 34

