MBT —
MODeEL-BASE
TESTING

Gusztav Adamis
adamis@tmit.bme.hu

MANUAL TESTING

- » Manual execution
Spexifications — Slow

— Time consuming
— Documentation
Manual test
design —E.g. GUI test

Though several solutions of partly
automating (Selenium, Jasmine)

» In most of the cases automation

IS necessary to achieve

ez el acceptable coverage In
e acceptable time frame

Agile Network Service Development 2

AUTOMATI

=D TESTING

(TEST SCRIPTS)

SuT
Specifications Testplan

Manual test
design

Test cases

)

Manual test
implementation

Test scripts

Test tool

Agile Network Service Development

'

» Test programs (scripts) to write
—Time
» Test execution tool to develop
—Time
» But when they are ready, fast
execution

» Problems:
— Test development
— Test validation
— Test maintenance

MODEL-BASED TESTING
» Automatic (abstract) test
% case generation

.“..,-
Marmial mede] . .
ciiion — Different strategies, goals
Model — Model shall be verified,
¥ generated tests are correct
Test case . - .
generation — Any change in specification ->
TS Re-generate the tests
= No need to touch the test
Conaretization scripts

Easier maintenance
test
— — Problem:
I Test Harness

Good only for ‘green field’
test development

Agile Network Service Development 4

MBT AT DI

LeVELS

(executable code)

Agile Network Service Development

|

=NT

Requirement

Specification

Modelling

Model Level

Code|Generation

Testing

[l el /mplementation EESERIEE

Cevel Testing Test Suite

eneration

TEST GENERATION
ALGORITHMS

» Measuring the adequacy of a test suite
— Coverage

» Deciding when to stop test generation

» Typically 100% coverage is not possible
— Time consuming
—Non-reachable states
Theoretically — if the model is wrong
Practically — complex guards, lot of variables

Agile Network Service Development

CLASSIFICATION OF TeST
SeLeECTION CRITERIA

» Most of them can also be applied to code, but now for
MODEL
— Not the same
— Both shall be tested

» Structural Model Coverage

» Data Coverage

» Fault-Model

» Requirements-Based

» Explicit Test Case Specification

Agile Network Service Development

CONTROL-FLOW-ORIENTED
COVERAGE CRITERIA

» Mainly for code, but

— For models in (E)FSM, UML, OCL, etc. : Decisions, Pre/Post
conditions

» Statement Coverage (SC)
— execute every reachable statement

» Decision (or Branch) Coverage (DC)

—each reachable decision is made true by some tests and false by
other tests

» Condition Coverage
— each condition is tested with a true and with a false result

» Path Coverage (PC)
— execute every satisfiable path through the control-flow graph
—generally impossible to reach (loops!)

Agile Network Service Development

CONTROL-FLOW-ORIENTED
COVERAGE CRITERIA

context SmartCard::verifyPin(p:PIN_CODES) :MESSAGES
post:
if pinTry = 0 then
result = MESSAGES::NO MORE TRIES
else
if (p=pin or statusPin=PINSTATUS::DISABLE) then
result = MESSAGES: : SUCCESS
else
result = MESSAGES: : ERROR
endif

endif

Agile Network Service Development

DATA-FLOW-0ORIENTED
COVERAGE CRITERIA

» For code

» Definition (assignment to) and use of variables
— Data Flow Graphs
— Definition-use paths

y All-Defs

— test at least one def-use pair (dv, uv) for every definition dv, that is, at
least one path from each definition to one of its feasible uses

» All-Uses
—test all def-use pairs (dv, uv). (testing all feasible uses of all defs)

» All-Def-Use-Paths
—test all def-use pairs (dv, uv) and to test all paths from dv, to uv

— Practically unrealistic
Agile Network Service Development 10

TRANSITION-BASED

COVERAG

= CRITi

—RIA

» For (E)FSM, LTS, UML state charts, etc. models

< (s Y
A C S | S r : x
DEBE Q —~CD 5, !
B D A B! SED
3 s3 §
» All-states Coverage § o (s)
— Every state of the model is - : \

visited at least once

e.g. ACG

Agile Network Service Development

e.g. ACE

11

TRANSITION-BASED
COVERAGE CRITERIA

A C (\V S1 | 84 =7
G _ |
S| $2 s3 @ : T
WQ) TR
| S5
o] (s)

» All-transitions Coverage
— Every transition of the model must be traversed at least once

—e.g. ACEFG + BD
—e.g. ACEFG + BDG (if shall end at final state)

ABCED or ABCEDCD

D Is one or two transactions?
Agile Network Service Development 12

TRANSITION-BASED
COVERAGE CRITERIA

» All-transition-pairs Coverage

— Every pair of adjacent transitions in the FSM or statechart model
must be traversed at least once

y For S2:
- AC+AD+BC+BD

Agile Network Service Development 13

TRANSITION-BASED
COVERAGE CRITERIA

A c (‘\' B e
DYP 3 Cs4)

» All-loop-free-paths Coverage:
— Every loop-free path must be traversed at least once
- ACG + ADG + BCG + BDG
Does not cover all transitions or even all states!

» All-one-loop-paths Coverage

— Every path containing at most two repetitions of one (and only one)
state must be traversed at least once

— All the loop-free paths and all the paths that loop once
4*3 = 12 test cases

Agile Network Service Development 14

TRANSITION-BASED
COVERAGE CRITERIA

A c
DEPE $)— Cs4)
B D

» All-paths Coverage

— Every path must be traversed at least once (exhaustive testing)
= If loop: infinite number of paths

- ACG+ADG+BCG+BDG+ACEG+ACEEGH+....

Agile Network Service Development

16

TRANSITION-BASED
COVERAGE CRITERIA

» All-loop-free-paths, All-one-loop-paths are inadequate on
their own, since they do not guarantee to cover all
transitions or even all states

— Extreme example: in the first state we have to take a loop at least
twice, nothing else than the first state is reachabile...

» In practice, the All-transition Coverage is the minimum to
reach

Agile Network Service Development 17

DATA COVERAGE CRITERIA

» For choosing a few good data values to use as test inputs
when there is a huge number of possible input values

> TWO extremes:

—One-value: simply requires to test at least one value from the
domain D. Often too simple.

— All-values: requires to test every value in the domain D.

This is not practical if D is large (e.g., 0. . 999999), but when D is
small, such as an enumerated type, it can be useful to test all
possibilities

Agile Network Service Development 19

cQUIVALENT PARTI IOI\IING AND
SOUNDARY VALUE TESTING

» A valid password contains 6..10 characters
— Equivalent partitions:
0..5 — shall not accept
6..10 — shall accept
11.. — shall not accept
Choose any value from the partitions
- E.g. 3,7, 186
— Boundary value testing

Lots of faults in the SUT are located at the boundary between
two functional behaviours

5,6, (7),(9), 10, 11

Agile Network Service Development 20

BOUNDARY VALUE TESTING

Assume, we have to test a field which accepts Age 18 - 56

AGE *Accepts value 18 to 56

Agile Network Service Development 21

https://i2.wp.com/www.softwaretestingmaterial.com/wp-content/uploads/2016/03/Boundary-Value-Analysis-1.png?ssl=1

BOUNDARY VALUE TESTING

Assume, we have to test a field which accepts Age 18 - 56

AGE *Accepts value 18 to 56

BOUNDARY VAILUE ANALYSIS
Invalid Valid Invalid
(min -1) (min, +min, -max, max) (max +1)
17 18, 19, 55, 56 57

Minimum boundary value is 18
Maximum boundary value is 56
Valid Inputs: 18,19,55,56
Invalid Inputs: 17 and 57
Test case 1: Enter the value 17 (18-1) = Invalid
Test case 2: Enter the value 18 = Valid
Test case 3: Enter the value 19 (18+1) = Valid
Test case 4: Enter the value 55 (56-1) = Valid
Test case 5: Enter the value 56 = Valid
Test case 6: Enter the value 57 (56+1) =Invalid

Agile Network Service Development 22

https://i2.wp.com/www.softwaretestingmaterial.com/wp-content/uploads/2016/03/Boundary-Value-Analysis-1.png?ssl=1

BOUNDARY VALUE TESTING

» Choose test input values at the boundaries of the input
domains

— Lots of faults in the SUT are located at the boundary between two
functional behaviours

Speed :=0..300 Speed =0, (1), 49, 50, (51), 300
WIperslow | pain level :=0..10 Rain_level =0, (1), (4), 5, 6, 10
It Speed >= 50 Speed= 0, Rain_level =0
OR Rain_level > 5 Speed= 0, Rain_level =1, ...
Y Speed= 1, Rain_level =0, ...
wiper fast Speed= 300, Rain_level = 10

Agile Network Service Development 23

PAIRWISE TESTING

» Pairwise testing is based on the assumption that most
defects are created as a result of no more than two test
parameters (test values) being in a certain combination

» E.Q.:
— Destinations: Canada, Mexico, USA
— Class: Tourist, Business, First
— Seat: Aisle, Window
» Exhaustive testing:
— 3*3*2 = 18 combinations

Agile Network Service Development

25

PAIRWISE TESTING

Test Destination Class Seat Preference
1 Canada Tourist Aisle

2 Mexico Tourist Aisle

3 (defect!) USA Tourist Aisle

4 Canada Business Class Aisle

5 Mexico Business Class Aisle

6 USA Business Class Aisle

7 Canada First Class Aisle

8 Mexico First Class Aisle

9 USA First Class Aisle

10 Canada Tourist Window
11 Mexico Tourist Window
12 (defect!) USA Tourist Window
13 Canada Business Class Window
14 Mexico Business Class Window
15 USA Business Class Window
16 Canada First Class Window
17 Mexico First Class Window
18 USA First Class Window

Agile Network Service Development

» Assume: USA, Tourist
causes the problem

» Pairwise test
generation:
—Test 18:
USA, First: in 9,
USA, Window: in 15,
First, Window: in 17

—Test 18 is redundant,
etc.

26

PAIRWISE TESTING

Number Destination Class el
Preference
1 Canada Tourist Aisle
3 : :
(defectl) USA Tourist Aisle
5 Mexico Business Aisle
Class
Mexico First Class | Aisle
USA First Class | Aisle
11 Mexico Tourist Window
13 Canada Business Window
Class
15 USA BUSINESS | \vindow
Class
16 Canada First Class | Window

Agile Network Service Development

» 9 tests Instead of 18
» Still finds the problem

27

PAIRWISE TESTING

» More effective if much higher combinations
—If 10 variables with 5 values each
510=9 765 625 exhaustive tests
Only 44 pairwise tests
—If 75 binary variables
27> =37 778 931 862 957 161 709 568 exhaustive tests
Only 28 pairwise tests

» Complicated test generation algorithms

> N-wise coverage
— If suppose that the problem depends on N values instead 2
— Number of tests rapidly grows as N increases
— All-triples can still be practical, but all-quadruples are ~not

Agile Network Service Development 28

)

FAULT-BASED T

Pre-specified faults
— Typically frequently occurred ones

=STING

— Mutation operators: e.g. substitute + with - in expressions
— Generate tests for each mutant of the original program,
Design a test that distinguishes that mutant from the original

program

The resulting test suite is therefore able to show, which faults are

NOT in the SUT
- Fault-finding Power

Agile Network Service Development

29

REQUIREMENTS-BASED
CRITERIA

» High-level, testable statements of functionalities
» Each requirement shall be tested (e.g. in acceptance tests)

» In MBT two typical solutions:

— 1. Record the requirements inside the behavior model (as
annotations on various parts of the model) so that the test
generation process can ensure that all requirements have been

tested

— 2. Formalize each requirement and then use that formal expression
as a test selection criterion to drive the automated generation of one
or more tests from the behavior model

Explicit test case specifications

Agile Network Service Development 30

ceXPLICIT TEST CASE
SPeCIFICATION

» Some explicit requirements are given in the model
— E.g.: Test shall contain this state

» Generate test
— For typical or for less typical cases
—Just for a given service

— Etc.

31

Agile Network Service Development

TEST SELeCTION IN AN
MBT TOOL (CONFORMIQ)

7 e

= Properties for EATF Expandec

| type filter text | Conformiq Options Gy rw
B Resource

q Builders

»» | Conformiq Options |
Git
Project References
Refactoring History
Run/Debug Settings

Lockahead Depth Maximum Communication Delay I

Test Suite Options

Only Finalized Runs

Stop At Full Requirement Coverage
Stop At Full Coverage

0SI Methodelogy Support
Autornatic Test Case Naming

Test Case Marme Prefix | Test Case

Requirement and Test Case Synchronization

[Requirements: [Mo connector -]

Disable notifications about QML requirements missing

Test Cases: |Nn connector v|

See Advanced for advanced test generation options.

[Restore Defaults] ’ Apply]

@ [ok [cance |

~ e e ST e, .- . R

Agile Network Service Development 32

TEST SELECTION IN AN

MBT TOO

_ (CONFORMIQ)

Test Targets: EATF_Expanded I3

DC 86% (669,/775) Testing Goals 1 2 3 4
| v 100%3/3 I Use Cases

v* 99%:100/101 I Requirements

v* 87% 294,339 & State Chart

w 100%:73/73 I States

L 89% 92/93 I Transitions

L 75%:129/173 I Transition Pairs

X 0% 0/0 - Imnplicit Consumption

v 82% 272/332 4 Conditional Branching

o 82%: 2727332 I Cenditional Branches

- 0% 0/0 - Atornic Branches

- 0% 0/0 I Boundary Value Analysis

- 0% 0/0 4 Control Flow

= 0% 0/0 P Methods

- 0% 0/0 P Statements

Agile Network Service Development

b

Dynarmic Coverage
Parallel Transitions
All paths: States
All paths: Transitions
All paths: Conditions

33

I} N - eantwuh@esekit1050.md X

Conformig - MaxDia_Testviodel Impl/model/SystemBlock.cqa - Conformiq

Fils Edit Praject Window Help
B % 8" ®
[|) cantomiq|
[25 Project Explorer 53 ¥ = 0| [sysemBlock.caa £ = B | & Model Bowser 52 | [S] Model Protiter| B Traceability Matrix| (5§ Test Case Dependency Matix #% ¥ =0

#** Daclaration of the external interface of the system being modeled. This is b Dismetet | Diameter.cqa | Main.cqa | SystemBlock.cqa
specific to system modeling; = similar construct does not appear ususlly in
programming languages. In this "system block", we initially declare one inbound
interface (in) and one outhound interface (out). The identifiers 'in' and

] cQ_TestHamessTamplate trend ‘out’ are the names for the intarfaces in the modsl. after the colon we

list the types of records that can possibly go through the interface in
question. */

=) CQ_TestSuite ticnd

5] CQ_Testsystem tten3 ?’Ste“‘ —
CQ_Typesttend Inbound in | Conn_CER, Send_Message, Stop, Disc, Start, Message, =
b s Conn_Ack, Conn_Nack, CER, CEA, DFR, DPA, DNR, DWA; o
L= SIPClientPrototype Outbound out . Message, Disc, ,@
Conn_Req, CER, CER, DPR, DPA, DWR, DWA; —
} pm——
))) ——
/** Declaration of a message type, which is technically presented as 3 "record e
type". It is a record of pure data. This record type 'MyMessage' is empty, — Tk
i.e. it does not contain any actual data fields. */
record Message { } [e—r——
— B
record Send_Message { } -
—
record Start { }]

record Stop { }

record Disc { }

record Conn_CER { }

| record Conn_Req { }
= a [B a n [B
Tes.. 53| 35 Mod... 9 Bre... 8

[—] Ml ol@/m - - o

#A Name

Tester Diameter | ! :
1 TestCasel :
2 Testcase2 | e . :
| B N ¥ 1
o E— ' Conn_CER | '
|st base =00, - .
5 TestCaseS ' :
6 TestCase§ |
- . CEA i | piameter.closed
=00 fef ' e . H
8 TestCases |
: Diameter. qend_CEAQ
3 TestCases : v
10 Test Case 10 CEA ! Diameter R_Open
=00 -
Diameter R_Dpen
DPR :
-
=00 " Diameter Send_DPAQ
: Diametpr Disc ()
DPA ; r
| =00 [! iamete final-state.

(I B

s

[H] computer
¥ 11:08

o 2 wuhen@adatbanyas... Inbox - Microsoft O... /= xDIA Project EnCOL...) Gmail - Inbo 0 model_fevel_testing... = Total Commander /...
-

8¢ @ Wednesday
(- eantwuh@esek...) % 01107

Agile Network Service Development 34

