TDD -
TeST-DRIVEN
DeVeELOPMENT

Gusztav Adamis
adamis@tmit.ome.hu

INTRODUCTION

» “What programming languages really need is a ‘DWIM’
instruction, Do what | mean, not what | say.”

» Software requires perfection
— People not perfect — buggy code

» A tool needed to alert you immediately when a mistake is
made
— And even eliminate the need of debugging

» Test-Driven Development (Test First Development)
— Rapid cycle of testing — coding — refactoring

Agile Network Service Development

INTRODUCTION

» Punchcards — intensive testing before compilation
» Language sensitive editors — can detect syntactical errors
on-the-fly
» TDD — can find semantic errors (almost) on-the-fly
— Every few minutes verifies the code

— If error: only few lines to check
— Therefore bugs are easy to check and fix

Agile Network Service Development

TDD Think

l

Red Bar

|

Green Bar

Refactor

Agile Network Service Development

» New task — several lines only

» Write a test first
— Shall fail

» Write the code
— The simplest that passes the test
— No future features
— Refactor or new feature
Though not refactor on every cycle,
always stop and seriously consider if
design needs refactoring
» Refactor
—No new feature just structure change
— All test shall pass as before

TDD eEXAMPLE: PARSE
HTTP QUERY STRING

» Task:
Program a Java class to parse an HTTP query string

» HTTP Query string:

— http://www.example.com/mypage.html?crcat=test&crsource=test&cr
kw=buy-a-lot

— Key=value pairs

— Concatenated by &

Agile Network Service Development 5

THINK

» The first step Is to imagine the features you want the code
to have

» “I need my class to separate name/value pairs into a
HashMap”

— Unfortunately, this more than five lines to code -> think of a smaller
increment

— Often, the best way to make the increments smaller is to start with
seemingly trivial cases.

» “I need my class to put one name/value pair into a
HashMap”

Agile Network Service Development 6

—XAMPLE - TEST WRITING

public void testOneNameValuePair () ({
QueryString query = new QueryString("name=value") ;

assertEquals (1, query.count())

}
» To compile must be added:

public class QueryString {
public QueryString (String queryString) ({}

public int count() { return 0; }

}
Test fails — Red Bar

Agile Network Service Development

eXAMPLE = CODING

» Write the code that passes the test

» Do not count with possible further requirements — use the
simplest solution

— Code remains shortest, fastest that satisfies the needs of the current
specification

— Specification may change at any time, at such case no unused code
left in the program

— Open for several possible continuations

public int count() { return 1; }
Test passes — Green Bar

Agile Network Service Development 8

NEXT STeP?

> Not to deal with multiple query strings yet
» Test an empty string as an argument

Agile Network Service Development

cXAMPLE

public void testNoNameValuePairs () {

QueryString query = new QueryString("");
assertEquals (0, query.count());
}
public class QueryString {
private String _query;
public QueryString(string queryString) {
_query = queryString;
}
public int count () {
if ("".equals(_query)) return O;

else return 1;

} testNull()

} Duplication from
tests remove

Agile Network Service Development 10

cXAMPLE — testNull ()

public void testNull() ({
try {
QueryString query = new QueryString(null)
fail ("Should throw exception");

}
catch (NullPointerException e) {

// expected testNul()

} Duplication from
} tests remove
public QueryString (String queryString) {
if (queryString == null) throw new
NullPointerException() ;
_query = queryString;
}

Agile Network Service Development 11

NEXT STeP?

» Write valueFor() that returns the value for a name
» Just for one entry

Agile Network Service Development

12

cXAMPLE — valueFor ()

public void testOneNameValuePair ()
QueryString query = new QueryString("name=value");
assertEquals (1, query.count());
assertEquals ("value", query.valueFor ("name")) ;

public String valueFor (String name) ({
String[] nameAndValue = query.split("=");

return nameAndValue[l];
} Duplication from
tests remove

Test not existing name

Test if 0 or more than 1 =

Agile Network Service Development ___

ceXAMPLeE MULTIPLE
NAME/NALUE PAIRS

public void testMultipleNameValuePairs () ({

QueryString query = new
QueryString ("namel=vall&name2=val2&name3=val3") ;

assertEquals ("vall", query.valueFor ("namel"));
assertEquals("val2", query.valueFor ("name2")) ;
assertEquals ("val3", query.valueFor ("name3")) ;

Agile Network Service Development 14

ceXAMPLeE MULTIPLE
NAME/NALUE PAIRS

public String valueFor (String name) {
String[] pairs = query.split("&");
for (String pair : pairs) {
String[] nameAndValue = pair.split("=");
if (nameAndValue[0].equals (name))
return nameAndValuel[l];

}

throw new RuntimeException (name+" not found") ,

Agile Network Service Development 15

NEXT STeP?

» Write count() returning by the number of query strings for

multiple query strings

Agile Network Service Development

16

cEXAMPLE
MULTIPLE count ()

public voild testMultipleNameValuePairs () {

QueryString query = new
QueryString ("namel=vall&nameZ=valZ2&name3=val3");

assertEquals (3, query.count()) ;

assertEquals ("vall", query.valueFor ("namel"));
assertEquals ("val2", query.valueFor ("name2"));
assertEquals ("val3", query.valueFor ("name3"));

Agile Network Service Development 17

cEXAMPLE
MULTIPLE count ()

public 1nt count () {
String[] pairs = query.split("&");
return pairs.length;

}

But test didn’t pass..

(split returns by the orig. str i1f no separator found)

public 1nt count () {

if ("".equals(_query)) return O;
String[] palrs = query.split("&");
return pairs.length;

}

Agile Network Service Development 18

TESTS

public class QueryStringTest extends TestCase {

public void testOneNameValuePair () {
QueryString gquery = new QueryString("name=value");
assertEquals (1, query.count()):;
assertEquals ("value", query.valueFor ("name")):;
}
public void testMultipleNameValuePairs() {
QueryString query =
new ueryString("namel=vallé&name2=val2&name3=val3");

assertEquals (3, query.count()):;

assertEquals ("vall", query.valueFor ("namel")):;
assertEquals ("val2", query.valueFor ("name2"));
assertEquals ("val3", query.valueFor ("name3"))
}
public void testNoNameValuePairs () {

QueryString query = new QueryString("");
assertEquals (0, query.count());
}
public void testNull () {
try {
QueryString query = new QueryString(null);
fail ("Should throw exception");
}
catch (NullPointerException e) { // expected
}

}
Agile Network Service Development 20

COD;

public class QueryString {

private String query;

public QueryString (String queryString) {

if (queryString == null) throw new NullPointerException();

_query = queryString;
}

public int count () {

if ("".equals(query)) return 0;
String[] palrs = query.split("&");
return pairs.length; . .
: Duplication
public String valueFor (String name) { Refactor needed
String[] pairs = query.split("&");

for (String pailr : pailrs) {
String[] nameAndValue = pair.split("=");

1if (nameAndValue[0] .equals (name))

return nameAndValue[l];

}

throw new RuntimeException (name + " not found");

}

Agile Network Service Development

21

REFACTORING

» Refactoring is the process of code improvement where
code Is re-organised and rewritten to make it more efficient,
easier to understand, etc.

» Refactoring is required because frequent releases mean
that code is developed incrementally and therefore tends to
become messy

» Refactoring should not change the functionality of the code

» Automated testing simplifies refactoring as you can see Iif
the changed code still runs the tests successfully

Agile Network Service Development 22

CODE SMELLS

» Divergent Change/Shotgun surgery

— Unrelated changes affect the same class/Have to modify multiple
classes to support changes to a single idea

» Primitive Obsession/Data Clumps

— High-level design concepts represented with primitive types (instead
of a class)/ Several primitives represent a concept as a group

» Data Class/Wannabee Static Class

—In a class only data with getters and setters/ In a class methods
without meaningful state (quasi static members)

— Combine them

Agile Network Service Development 23

CODE SMELLS

» Coddling NULLs
— If NULL received as parameter returning by NULL
— Typically indicates a problem that is not properly handled

— Instead of ‘forwarding’ NULL, throw an exception when NULL
received as parameter

Unless NULL has explicitly defined semantics

» Time Dependency
— Class’ methods must be called in a specific order/
— Half-Baked Objects

Special case of Time Dependency: first be constructed, then
Initialized with a method call, then used

— Typically indicates encapsulation problems

Agile Network Service Development 24

HOW TO REFACTOR

» Proceed small sequence of small transformation instead of
one large
— Not rewriting
— Code transformation in several small, controllable steps
— Run tests after each small step

Agile Network Service Development 25

TESTS

public class QueryStringTest extends TestCase {

public void testOneNameValuePair () {
QueryString gquery = new QueryString("name=value");
assertEquals (1, query.count()):;
assertEquals ("value", query.valueFor ("name")):;
}
public void testMultipleNameValuePairs() {
QueryString query =
new ueryString("namel=vallé&name2=val2&name3=val3");

assertEquals (3, query.count()):;

assertEquals ("vall", query.valueFor ("namel")):;
assertEquals ("val2", query.valueFor ("name2"));
assertEquals ("val3", query.valueFor ("name3"))
}
public void testNoNameValuePairs () {

QueryString query = new QueryString("");
assertEquals (0, query.count());
}
public void testNull () {
try {
QueryString query = new QueryString(null);
fail ("Should throw exception");
}
catch (NullPointerException e) { // expected
}

}
Agile Network Service Development 26

COD;

public class QueryString {

private String query;

public QueryString (String queryString) {

if (queryString == null) throw new NullPointerException();
_query = queryString;

}

public int count () {
if ("".equals(query)) return 0;
String[] palrs = query.split("&");

return pairs.length;
}
public String valueFor (String name) {
String[] pairs = query.split("&");
for (String pair : pairs) {
String[] nameAndValue = pair.split("=");

1if (nameAndValue[0] .equals (name))

return nameAndValue[l];

}

throw new RuntimeException (name + " not found");

}

,}Agile Network Service Development

NEXT STeP?

» Eliminate duplication
» Single method that does the parsing
» The other methods call this rather parsing themselves

» This parser shall be called from constructor and parses the

guery string into a HashMap
» But this would be too large step

» Do it step-by-step
» First introduce HashMap to valueFor()

Agile Network Service Development

28

REFACTORING EXAMPL:

public String valueFor (String name) {

HashMap<String, String> map = new
HashMap<String, String>();

String[] palrs = query.split("&");
for (String pailr : pairs) {
String[] nameAndValue = pair.split("=");

map .put (nameAndvValue[0] , nameAndValue[l]) ;
}

return map.get (name) ;

}
After making this refactoring the tests pass

Agile Network Service Development 29

NEXT STeP?

» Extract the parsing logic into its own method
— parseQueryString()

» Extract Method refactoring technique

Agile Network Service Development 30

REFACTORING EXAMPL:

private HashMap<String, String> parseQueryString() ({

HashMap<String, String> map = new HashMap<String,
String> () ;

String[] palrs = dquery.split("&");
for (String pair : pairs) {
String[] nameAndValue = pair.split("=");

map.put (nameAndValue[0], nameAndValue[l]);
}

return map;

}

public String valueFor (String name) {
HashMap<String, String> map = parseQueryString() ;
return map.get (name) ;

}

Agile Network Service Development 31

R

C |

~FACTORING |

» The tests passed again
— Small steps -> be surprised if they didn’t

» Key point in refactoring:

— By taking small steps, you remain in complete control of changes,
which reduces surprises

— Or if test fails: you know exactly where the problem is

Agile Network Service Development

=XAMPLY

32

NEXT STeP?

» Make parseQueryString() available to every method

— Introduce a _map instance variable to class — that stores the hash
table that can be accessed by every method

Agile Network Service Development 33

REFACTORING EXAMPLE

public class QueryString {

private String query;

private HashMap<String, String> map = new
HashMap<String, String>();

public String valueFor (String name) {
HashMap<String, String> map = parseQueryString() ;
return map.get (name) ;
}
private HashMap<String, String> parseQueryString() {
String[] pairs = query.split("&");
for (String pailr : pairs) {
String[] nameAndValue = pair.split("=");

_map.put (nameAndValue[0], nameAndValuel[l]);
}

return _map;

}

} Agile Network Service Development 34

NEXT STeP?

» When instance variable introduced, no need for the return

value in parseQueryString()

Agile Network Service Development

35

REFACTORING EXAMPL:

public class QueryString {

private String query;

private HashMap<String, String> map = new
HashMap<String, String>();

public String valueFor (String name) {

T M
11 oO1l1l'1

String—SEring>—map——parseQueryString () ;
return map.get (name);

}

private void HashMap<String;—SErineg>—PparseQueryString () {

String[] pairs = query.split("&");
for (String pailir : pairs) {
String[] nameAndValue = pair.split ("=");
_map.put (nameAndValue[0], nameAndValuel[l]);
}
return—maps

}
Agile Network Service Development 36

1

NEXT STeP?

» parseQueryString() now can be called from constructor

Agile Network Service Development

37

REFACTORING EXAMPL:

public class QueryString {

private String query;

private HashMap<String, String> map = new
HashMap<String, String>();

public QueryString (String queryString) {

1if (queryString == null) throw new
NullPointerException () ;

_query = queryString;
parseQueryString() ;

public String valueFor (String name) {
parseQueryString ()
return map.get (name);

}

}

Agile Network Service Development 38

R

C |

~FACTORING |

=XAMPLY

» Seems like a simple refactoring
—Moved only one line of code

» Yet tests fall
— Parse method didn’t work with an empty string

» This shows why taking small steps is such a good idea

— Because only one line of code was changed, can be known exactly
what had gone wrong

Agile Network Service Development

39

REFACTORING EXAMPL:

private void parseQueryString () {

if ("".equals(query)) return;

String[] palrs = query.split("&");
for (String pailr : pairs) {
String[] nameAndValue = pair.split("=");

~map.put (nameAndValue[0], nameAndValuel[l]);

Agile Network Service Development 40

NEXT STeP?

» Finally remove parsing from count()

Agile Network Service Development

41

REFACTORING EXAMPL:

» From:

public 1nt count () {

if ("".equals(query)) return O;
String[] pairs = query.split("&");

return pairs.length;

J
» TO:
public int count() {

return map.size();

}

Agile Network Service Development

NEXT STeP?

» Remove _query instance variable that stored the unparsed
guery string
» Pass the query string as a parameter

Agile Network Service Development 43

REFACTORING EXAMPL:

public class QueryString {

private HashMap<String, String> map = new HashMap<String, String>();
public QueryString (String queryString) {
if (queryString == null) throw new NullPointerException();
parseQueryString (queryString) ;
}
public int count () {
return map.size();
}
public String valueFor (String name) {
return map.get (name);
}
private void parseQueryString (String query) {
if ("".equals(query)) return;
String[] pairs = query.split("&");
for (String pair : pairs) {
String[] nameAndValue = pair.split("=");
_map.put (nameAndValue[0], nameAndValue[l]);

}
Agile Network Service Development 44

SIMPLE DESIGN

» Perfection is achieved, not when there is nothing more to
add, but when there is nothing left to take away. (Antoine
de Saint-Exupery)

» Any intelligent fool can make things bigger, more complex
and more violent. It takes a touch of genius and a lot of
courage to move in the opposite direction. (Albert Einstein)

Agile Network Service Development 45

SIMPLE DESIGN

1. The system (code and tests together) must
communicate everything you want to communicate

2. The system must contain no duplicate code

3. The system should have the fewest possible
classes

4. The system should have the fewest possible
methods

1. and 2. together: Once and Only Once rule

Agile Network Service Development 46

YAGNI = YOU AREN'T
GONNA NegeD IT

» Avoid speculative coding
—No functionality shall be added early
Only those that are required by the current requirement (story)
— Requirement may change
—Unnecessary code can remain
Slow, harder to maintain

— Since they are not needed, they are not well defined and
Implemented

— Remove code that’s no longer in use
It remains in version ctrl system if needed in future again

» One of the hardest things for developers not to do!

—We are all tempted to add functionality now that we are just sure is
going to be needed later

— Extra functionality always slows us down and squanders resources

Agile Network Service Development 47

ONCe AND ONLY ONCI

» Remove code duplication
— But don’t just eliminate duplication; make sure that every important
concept has an explicit representation in your design
» Rather than expressing concepts with a primitive data type,
create a new type (class)

E.g. instead of representing a Dollars with simple decimal,
create a class

public class Dollars {
private decimal dollars;
public Dollars(decimal dollars) { dollars = dollars; }
public decimal AsDecimal () { return dollars; }

public boolean Equals(object o) {...}
}

Agile Network Service Development 48

ONCe AND ONLY ONCI

» Although basic data types may seem simpler (one less class),
actually make your design more complex: no place for the
concept

» As a result, when working with that concept, the code may
need to re-implement basic behavior - widespread duplication
— string parsing,
— formatting,
— simple operations
» Though duplication may be only fragments of code, but make
your code hard to change

— For example, if you want negative amounts to be red, all little fragment
of formatting code must be found and fixed

— By starting with a simple but explicit representation of the concept, you
provide a location for future changes to congregate

Agly,\(gm;;(ggrueelgggd%ntgtduplication and complex code. 49

SeELF-DOCUMENTING CODE

» Simplicity Is relative
— If the rest of your team or future maintainers of your software find it
too complicated, then it is

» Use naming conventions that are common for your
language and team

» Use names that clearly reflect the intent of variables,
methods, classes, etc.

» Before using a comment, ask your pair how to make the
code express the idea without needing a comment

» Comments aren’t bad, but they are a sign that your code is
more complex than it needs to be
— Try to eliminate the need for comments when you can

Agile Network Service Development 50

ISOLATE LEGACY CODE

» When calling legacy functions widespread
— Hard to modify or replace

» Hide behind an interface that you control
— Use adapter classes instead of instantiating legacy classes directly
— Create your own base class that extend the legacy classes instead
of extending them directly
» Isolating legacy components also allows to extend the
features of the component and gives a convenient interface
to write tests against

— Implement adapter class incrementally — support only those
features that are actually needed — not everything

— Write adapter’s interface to match your needs not the component
» Removes duplication but makes code a bit more complex

Agile Network Service Development 51

LINMIT PUBLIJHCD
INTERFACES

» Published interfaces reduce your ability to make changes

—Once an interface is published it shall not be modified because it is
used in several programs

» Some teams treats internal interfaces as published
— It limits the ability of refactoring
— Non-published interfaces can be changed — with their callers

» Each published interface is a design decision commitment
— But may be changed in future
— Limit the number of interfaces

» The smaller the interface, the better

—Much easier to add new elements to your API than to remove or
change incorrect elements.

JAgile Network Service Development 52

INCREMENTAL DESIGN
AND ARCHITECTURE

> No time for creating a well-designed plan
— Incremental or evolutionary design

» Similar concepts as in TDD on all levels of design

» When first create an element (method, class, architecture)
— Be as concrete and specific as can be
— Regardless of how simple it is and how to solve future problems

» The second time work with that element, modify the design to
make it more general
— But only general enough to solve that problems it needs to solve, etc.

» Breakthroughs
—When larger refactor needed

Agile Network Service Development 53

RISK-DRIVEN
ARCHITECTURE

» RiIsk-Driven Architecture

—Although designing for the present, it's OK to
think about future problems. Just don’t
Implement any solutions to stories that you
haven't yet scheduled

—Although it would be inappropriate to implement
features your customers haven’t asked for, you
can direct your refactoring efforts toward
reducing risk

Agile Network Service Development 54

INCREMENTAL VS
UP-FRONT DeESIGN

» Isn’t incremental design more expensive than up-front
design?
» Just the opposite

— Incremental design implements just enough code to support the
current requirements, you start delivering features much more
guickly with incremental design

—When a predicted requirement changes, you haven’t coded any
parts of the design to support it, so you haven’t wasted any effort

Agile Network Service Development 55

PERFORMANCE
OPTIMIZATION

» Nowadays computers are complex
— Several internal units, parallelism, pipelines, caches

» Hard to calculate the performance
— Only with measurement
— Performance tests are end-to-end tests
They have to measure the performance of the whole service
— If performance test fails
Modify system
If better keep, otherwise throw

Once performance test passes, stop: increase the performance
more only if needed!

If refactoring — run performance tests again

Agile Network Service Development 56

PERFORMANCE
OPTIMIZATION

» Major drawbacks of (performance) optimization
— Leads to complex, hard-to-understand and maintain code

— Takes time away from delivering new feature (choice to optimize is
a choice not to do something else)

— Neither is in the customer’s interest
— Optimize only if serves a real, measureable need
» Potential performance problem
— Explain to customer in terms of business tradeoffs and risks
— Shall be the (business) decision of the customer

Agile Network Service Development 57

cESTIMATION OF A
PERFORMANCE STORY

» Similarly to bug-fixing, the duration mostly
depends on how long it takes to find the cause of
the problem

—Can be hard to estimate
—Time-box the estimation
If not enough, write a new story

Agile Network Service Development 58

